3D CITRUS GROVE RECONSTRUCTION BASED ON EMPIRICAL MEASUREMENT

By

SANGHOON HAN

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA

2010

www.manharaa.com




UMI Number: 3521400

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI

Dissertation Publishing

UMI 3521400
Copyright 2012 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106 - 1346

www.manaraa.com



© 2010 SangHoon Han

www.manharaa.com




To all the people who believed in me

www.manharaa.com




ACKNOWLEDGMENTS

I would like to express my sincere thanks to Dr. Thomas F. Burks, my supervisory
committee chair and advisor, for introducing me to the subject of robot vision and for his
continuous faith in me throughout this work. His advice and support enabled me to successfully
complete all my graduate studies at the University of Florida. I would also like to thank to Dr.
Lee, who gave me special advice. I am grateful to my other committee members: Dr. Beck, Dr.
Dankel and Dr. Dixon for being a part of my dissertation committee. Their valuable insight and
guidance contributed to the completion of this research work.

I am thankful to all my friends in our lab Agricultural Robotics and Mechatronics group
for discussing and helping me with all of the experiments. I express my special gratitude to Greg
Pugh and Mike Zingaro for their invaluable technical support and building system. I thank the
personnel in the Department of Agricultural and Biological Engineering for providing flexibility.
I thank my family and all the people who kept me encouraged for long time. Special thanks go to
Ms. Sarah Baybordi for proofreading this document and sharing a special friendship. Lastly, I
gratefully acknowledge the United States Department of Agriculture, Florida Department of
Citrus and Florida Legislative Initiative for Citrus Harvesting for providing the necessary funds

to carry on this research.

www.manaraa.com



TABLE OF CONTENTS

page

ACKNOWLEDGMENTS ...ttt ettt sttt et et esaesseenseenseeneesseensesneenseens 4

LIST OF TABLES ...ttt sttt sttt ettt b et sbe et eatesaees 10

LIST OF FIGURES ...ttt ettt ettt e b nte e s e nseenaesnean 11

ABSTRACT ...ttt ettt bttt e a e bt ettt e s bt et eatenb e et st e bt et enee 16
CHAPTER

I INTRODUCTION ...ttt ettt ettt et sttt saeenbeeaeesaeas 18

Citrus Groves 1 FIOTIA@ ......oouiiiiiii e 18

UNMANNEA SYSTEIMN ...evtieiiiieiieciie ettt ettt et ettt e st eeteesabeesbeessaeeseessseenseessseenseenneeas 18

Autonomous Vehicles for Citrus GIOVES .........cooouiiuiiiieiiieiieiieeiee ettt 19

RODOLICS OI CIITUS GIOVES ....eeviieiiieiieeiieiie ettt ettt ettt et stee et e et e snbeeseesnseensee e 19

2 LITERATURE REVIEW ....oiiiiiiiiieeee ettt ettt e sneas 20

Agricultural Applications using Computer Vision SYStem .........cccueevveeriieniienieeriienieenieennneen 20

AUtoNOmMOUS VENICIE ....coviiiiiiiiiiiiee ettt 20

Harvesting RODOL.......c..oiiiiiiieie ettt et es 20

Requirements of Vision-Based 3D Reconstruction............cccceveeiieeniieenieeeciee e 21

Feature-Based Image ProCESSING ........cc.uiiiiiiiiiiiieiieciie ettt st 21

Feature MatChing........c.veiiuiiieiiiccie ettt e et e e eabe e e naeeenaeeennneeas 21

Area-based MAtChING .........cciiiiiiiiieieie ettt s 22

Feature-based matChing...........cccviviiiiiiiiiciieceece e e 22

Color-based MEthOd .........c.cooiiiiiiiiiieiee et 24

Descriptor-based method...........c.oooiiiiiiiiiiiiiccece e 24

Feature Tracking........covoviiiiiiiie ettt sttt e et e s e e ens 26

IMOION ESTIMATION ....eeiiieiieeitteiie ettt et e et e b e e et e e bt e e steebeesabeebeens 27

Linear tracking model ..........cccooiiiiiiiiiiiiieieeeee et 27

Non-linear tracking Model ..........c.cooviiiiiiiiiiie e 29

Stochastic tracking Model ...........cccueviiiiiiiiiiii e 29

Geometric tracking MOdE] ..........coocviiiiiiiiiiie e 29

Structure and Motion EStIMAtION .........coccuiiiiiiiiiiiieiieeiie ettt 31

Camera Model and GEOMELTY .......ccccviiiiiieiiiieeciie ettt eeste e e beeeaeeeeaeeenes 31

Pinhole camera model ...........c.oooiiiiiiiiiii e 31

INEIINSIC PATAMELETS ...eeevviieiiiieeiieeciee et e et e et e e et e e s e e e saaeessteeessseeesaeeessaeeseeennns 31

EXIIINSIC PATAMETETS ......vieiiieiiieiieeiieeiee et eeite ettt et eteeebeesteeesaeesseeesseeseesnseenseanns 32

IMAEZE IMOSAIC ...eeeieieeeiiie ettt ettt e et e et e e et e e e nteeeessaeesssaeessseeessaeenssaeennseens 33

IMIOTION EYPIC ettt ettt et eite et ettt et e et e et eeateeseesnbeenseeenseenseeenseensaesnsaenseanns 33

Estimation 0f MOtION ......coiiiiiiiii et 33

www.manharaa.com




—

COMPOSILION ..eeiieeiiieiie ettt et ette et e et e et e esteeebeesaaeesbeesaseenseessaeenseessseenseesnseenseanes 34

APPlEd tECRNIQUES ....eeeeiiieeiie et e e e e aaeeeaaeeenns 35

3D RECONSIIUCHION ..ottt eiie ettt ettt e et et e et e sateesbeessaeenbeesabeenseessneenseesnseenseanns 36
Estimation of structure and mMOtION ..........eeeiieiiiieiiie e 36
Estimation of essential MAatriX ...........cocueeriieriieiiienieeieenie e 36
EStimation Of MOtION .......cccciiiiiiieeiiie et e e e sre e e iaeeeaaeeeaaeeenes 37
EStimation Of STIUCTUIE ........oouiiiiiiiieiie ettt et s es 40

APPlEd tECRNIQUES ....eeeeiieciie e e e e e e aaeeeaaeeenes 42
Different approaches ..........c.coouiiiiiiiiiiie et 43
OBJECTIVES ...ttt ettt et ste e e et ees e e nte e st e sseenseeneeeneenseenes 52
ODbJECtIVE STAtEIMENL.........ieiiiiiieiieeie ettt ettt et e et estte e bt e sseeebeessseebeessseeseesnseenseanes 52
....................................................................................................................................... 52

SUD ODJECTIVES ..ttt ettt ettt st e et e st e e bt e enteesseessbeenseesnaeenseannseenses 52
Generating a mosaic 1IMage 0f @ GrOVE SCEMNE ......uvivruveeeiieeeiiieeeiieeeieeeeieeeseeeeseaeeenereeenns 52

3D CaANOPY MOAECLS ...eoniiiiieiieeieete ettt ettt et e et e st e et e e ssaeebeesnaeenaeaes 53
METHODS AND PROCEDURES ...ttt 54
INEEOAUCTION. ...ttt ettt ettt e et e et e st e e seeenbeeseeenseesaesnseenseans 54
APPIICALION SCENATIOS .....cuvieeeiiieeiiieeeieeesteeeeteeesaeeestteeeteeeeteeessaeessseeessseeessseeensseeensseens 54
Scouting autonomous vehicle SYStem ..........cccceeeviieiieiiiienieeiieiece e 54
Harvesting TODOL........iiiiiii ettt e e e e eeaaeeeaaeeesaeeenns 54
Assumptions and LIMItatioNS .......ccueeevieriieniieniieeieeiie ettt ettt e e eieesaeebeeseaeesaeseeeas 55
CIIUS CANOPY SCOIEC....uuvvierurieeerieeetieenteeesreeessseeessaeesssseesseeesseeesssaeassseeessseeesssessnsees 55

Video frame IMAZE ......eevvieiiieiieeiieiieeie ettt ettt ettt s e eseeesreeseeeaae s 55

NI Fed (SR T 0] 1 A1 1<) 1 4 D USRS 55

Motion model and large objects than VIEW ...........ccoecveviiiiiieniieiieieeieeee e 56
Methods and ProCeAUIES..........ooviiiiiiiiiiii et e e e eeeeaee e 56
CONCIUSIONS. ...ttt ettt ettt ettt et e e bt e stteenbeessbeesseessbeenseesnbeenseessseensaennseenseanes 57
FEATURE DETECTION ......oiitiiiiiieiiee ettt ettt sttt et aesneense e eneenseenes 59
INEEOAUCTION. ...ttt ettt ettt eeb e et e et e e st e eabeeseeenbeesaeenseenseens 59
Methods and ProCeAUIES..........oouiiiiiiiiiiii ettt e e e e e e e eaeeenenas 59
Image ENhanCement ...........ocoeiiieiiiiiiiiieeeeee ettt ettt es 60

| TN D 1S (o1 10 o USRI 60
RESULLS. ..ttt ettt et e et e bt eeabeeaeesabe e seeenbeebeeenbeebeeenbeenneans 62
FTUit Det@CHION ...cccutiiieiiieeceie ettt et e et e e st e e nteeeesseeesaeeesaaeennneeas 62
SIZE PTODICIM......iiiiieiiiiciie ettt ettt ettt e eeeeenes 62
(07075761 10 1S 103 4 1S USSP 62
............................................................................................................................ 63
......................................................................................................... 67
............................................................................................................................. 67
..................................................................................................... 67

www.manharaa.com



ALCTIVE MIESI.c.eeeieeieeeeeeeeeeeeeeeeeeeeeeeee ettt eeeeeeeeeeeeeeeeeeeeeeees 68

EXTEINal fOTCE ...nuviiiiiiieiee et e e e e e ae e e aaaeeaaeeenns 68

INEETNAL FOTCE ...iiieiii ettt e es 69

Feature management ............ooouuiiiiiiiiie ettt e e e e e 69
SIMUuIation RESUILS.......coiiiiiiiiiiieiece et 70
Multilayered ACHIVE TTEE ....cccveeeeiieeciie et ettt et e et e e s te e e st eeessaeeesaaeesaeeennneens 70
Generation hierarchical STUCLUIE ..........cccueeviiiiiiiiiieiieeieeee e 70

External force and internal fOrce..........covieviiieiiieiiiieeieeeee e 71
Simulation and TESUILS ........cc.eeiiiiiieiiieiece e 72
(07071161 10 1S 103 4 1S SRR 73
FULUTE WOTK ...ttt ettt sttt e e bt e e e e saesabeensee e 73
7  SEQUENTIAL IMAGE MOSAICING......oootiiieiieieeiieeee sttt 81
INEEOAUCTION. ...ttt ettt ettt eeb e et e st e e st e eabeeseeenbeeseesnbeenseans 81
Methods and ProCeAUIES..........oouiiiiiiiieiie ettt et e e e e e e enaeeeneeas 82
Projection MOEL .......c..ooiuiiiiieieeeee ettt es 82
ATLGNIMENE ...oiiiiiieciieeee et e et e e e e e e e abeeeteeessseeesssaeesssaeenssaeesseeesseeesseens 83
Filename NUMDEIINE .........coiuiiiiieiieiie ettt ettt ettt ettt e sabeebeesnaeeseesnseenneens 84

L2514 0 1S) 511111 1 SRS 84
CONTIGUIALION......eeiiieiieeieetee ettt ettt et et e et e e saaeesbeessaeesbeessbeenseessseenseesnseenseanns 84
STMUIALION. ...ttt e et e e st e e s steeessbeeessseeesseeessaeensseeenssaennns 84
RESULLS. ..ttt ettt ettt et et e et e e aeeeabe e seeenbeebeeenbeeseeenbeenneans 85
(07075761 10 1S3 103 s USRS 86
8  VISION BASED 3D RECONSTRUCTION......ccueiiiiiiieiieeiieeie ettt 92
INETOAUCTION. ...t et e et e et e e et e e e ta e e esteeesssaeessseeesssaeensseeensseennsnas 92
Methods and ProCEAUIES...........oiiiiiiiiiiieie ettt st es 93
3D Reconstruction using an 8 Point AIgorithm ............cccoeeiiiiiiiiiiiiice e, 93
Markerless approach .........c.cccuiiiiiiiiiiiieiieeeee e 93

Initial base vertex model ..........ccoeeiiiiiiiiieiie e 94

Interest POINt MANAZET ......c..eeruieriiieiieeie ettt ettt ettt e e e e eeaeesteeenseebeessaeeseees 94
155070) (5100 1S3 117 110 ) DO USRSt 96
Sensitivity to round-0ff €TTOT........ceeviieiiiiiieiec e 97

DISCOTA TNACK .ttt ettt e e et e e st e e aee e esaeesaeeessaeenseeennns 97

3D Reconstruction using a Pliicker Coordinates System ............ccceevevievieniieeniieninenieens 98
EXPETIMENL......oiiiiiieiiie ettt et e et e et e e et e e steeesntaeessaaeesssaeensseeesseessseennns 100
CONTIGUIALION . .....eeiieeiieeie ettt ettt et et e bt e st e e bt e saaeenbeessbeenseeesbeenbeesnseenseennseas 100
RObOt MOtION ENETATION ......viiiiiieeiiie et ettt et e e eeenaeeensaeeas 101

Robot motion control and capture IMage ..........ceecveerieeriierieenienie e 101
Calibrations for Camera Parameters...........cccvieruieeiieeeiieeeiieecie e sevee e e e 101
Rectification for lens distortion effect..........ccoeceieviieriiiiieniiceeeeeee e 101
Accuracy of camera motion €StMATION.........eeccvveeeiiireriireeeiieeeieeesreeeseeeeseaeeeeaeeas 102

Feature MatChinNg...........oooviiiiiiiieiie ettt ettt e e e enee 103
INAOOT EXPEITMENLS .....veiiiiiiiiie ettt et e e e esaeeenaseeenneas 103
OUtdOOT EXPETIMENT ....eeiiiiiiieiiiieiie ettt ettt ettt sttt e et eeeeteebeesnaeesaenaneas 104

www.manharaa.com




RESULES. . e et e e e e e e e e e e e e e e e e e e e s eans 104

(07075761 10 1S3 107 s SRR 105

FULUTE WOTK ..ottt ettt ettt et et e e e e enaeenes 106

9 RANGE SENSOR BASED 3D RECONSTRUCTION ......cccciiiiiieiiieieeieeeeee e 121

INEEOAUCTION. ...ttt ettt ettt e et e e st e e b eeesaeenteeesteenseeenseenses 121

Methods and ProCeAUIES..........cccuiiiiiiiieiie ettt e seaeeeeaeeenaeeenes 121

Coordinates of LADAR and VehicCle ..........ccccooiiiiiiiiiiiiiiicieceeee e 121

Scanning model Of LADAR .......couiiiiee ettt s e 121

Motion model 0f VEhicCle .......c.cooviiiiiiiiiiii e 122

SIMUIALION. ...ttt e st e et e e e s saaeesaaeeesseeenssaeensseesnsneens 122

Virtual canopy MOdel........c..oovuiiiiiiiiieiieiiee e 122

LADAR SIMUIALION ...eeiiviiiiiieciie ettt e et e e e enaaeesaeeensaeeas 123

MOtION SIMUIATION .....eieiiieiiieiie ettt et et ebeeeeaeenes 123

Simulated dISTANCES ......veeeviiieiiiecie e e e e e e e e s e e e aaeeenes 124

Results 1N TECONSTIUCHION .....eeuvieiiiieiie ettt ettt et e e e 124

EXPETIMENL......iiiiiiiiiiie ettt e et e et e e et e e staeesstaeesssaeesssaeensseeenssaeesseennns 125

Configuration of QUIPMENTS .......c.eeeiiiiriieiiieiie ettt ettt et see et st eeaee e etaesaaees 125

Data acquiSition SOTEWATE ......cc.eeeiiiiiiiie ettt e e e e e eeennees 125

Calibration Of LADAR ....oouiiiiiee ettt s 125

ODbtaINEd TAW atA.......veieiiieeiiie et e e e tae e st e e s aeeesaseeesaeeesaeeennaeens 126

Adjustment of POSTHON data..........ccuiiiiiiiiieiiieiiee e e 126

RESUILS. ..ttt e et e e et e e s te e e s taeesnaaeeesbaeensaaeenaeeenreeanns 126

Reconstruction 3D SPace data .........eecueeeeieeiiienieeiieeie ettt 126

Calculation of vOIUME Of CANOPY ..eecvvviieiiiiiiiiieiie et e 127

Representation on GIS SOtWAIE..........coviieiiiiiiiiiieie e 127

(07075761 10 1S3 107 s SRR 127

FULUTE WOTK ..ottt ettt ettt et e e eenaeenes 128

10 CONCLUSIONS AND FUTURE WORK ......ccoiiiiiiiiiieieeeceteie e 135

Summary and CONCIUSIONS .........eeiuiiiiiiieiiieiieiie ettt ettt saeeebeeteeenbeeseesaseenaee e 135

FULUIE WOTK ..o ettt st e e st e e st e e e ssbaeesaeeennaeeenes 137
APPENDIX

A GEOMETRY ..ttt ettt et e bt et eeaeeste e s e eseesseenseeneenaeens 139

Pliicker Coordinates SYStEIM ......cc.uieiieriieiieiie ettt ettt ettt et site et ae et esaaeebeesaaeenes 139

DETINIEIONS ..ottt et e et e et e e et e e e s teeessaeeessseeesseeenssaeennseeennes 139

POINE 1.ttt ettt ettt ettt et saae e eenaeennes 139

57151 TSRS 139

PLANE ...ttt et e e ennes 140

www.manharaa.com




ANGLE ..o ettt e a e et tee et e et e enaeennes 140

A sign between two lines which meet each other ............cccooevviieiiiiiiiiieee 140

An angle between two lines which meet each other ...........c.cocccooiiiiiiiiiinie, 140

An angle between tWO Planes........ccc.eeeciieeiiieeiiie et 140

POTNE. ..ttt sttt eae 140

A point where a line passes though a plane ...........ccceevvieeiiieiiiiccieceeeeeee 140

A point on a plane which is closest to the point............cccceeeieriiiiiienieiciieieeieee, 141

A point on a line which is closest to the point ...........ccceeviiieriiieciieceeeee e 141

A point on a line which is closest t0 @ lin€..........ccceevvierieiiiieniiiiiieieceeee e 141

LI et ettt ettt eeat e et eeneeenees 142

A line passing through two lines with the shortest distance .............cccccceeveenennee. 142

A line made by tWO Planes .......cc.eeeiiieiiiieeiiece e 142

PLANE ..o ettt h ettt ene 142

A plane made by a point and @ 1INE ..........cecviiiiiiiiiiieieece e 142

A plane made DY tWO 1INES .......ooiiiiiieiiiciieiecieee e 142

BaSic FUNCHIONS.......oiiiiiiiiiie ettt e s 142
Triangle FUNCHIONS..........ooiiiiiiiiiieiie ettt ettt ettt st et e e eenaeenee 142

Angles in triangle when edges are Known...........ccccovveeiiieiiiieeniie e 142

Volume of Tetrahedron ...........ccoooviriiiiiiiiiieee e 143

B CRITICAL SOURCE CODES OF ALGORITHM........cccooiiiiiiiiiieieeeeee e 144
Leaf DEIECLION ...ttt ettt et sttt et sbt et e e sbe et et e saean 144
Multilayered Active Tree Tracking .......ccoeeevueeiiiiieeiiieeiie et eeae e 145
ACHIVE IMESN.....cniiiiiee et 145
Hierarchical Structure Generation ............coceeiiiiiieiiiiiiieneeeee e 148
Multilayered ACtIVE TTEE ....c..eecuieruiieiieiie ettt ettt ettt e e e enes 148
Sequential IMage MOSAICINE.......cccuiieiiieeiiieeiieeeiieeeieeeeteeeseeesteeesaeeessseeensaeeesseeesseeennes 150

3D Reconstruction With ImMages..........c.eevvuieiiieiiiiiieiii et 153

3D Reconstruction with Range Data ............coccvveiiiiiiiiiiiiieceeceeee e 153

C  DEVELOPMENT TOOLS ..ottt sttt 155
LIST OF REFERENCES ...ttt sttt ae e nneens 156
BIOGRAPHICAL SKETCH ...ttt sttt sttt s 159

www.manharaa.com



LIST OF TABLES

Table page
5-1  Comparison detected number Of frUit. .......cccceciiiiiniiiiiiiiiiic e 64
7-1  Intrinsic parameters fOr SIMULAION. .......ccuieiiiiriieiiierie e 87
8-1  Calibrated Intrinsic camera PArameters. ..........ccuevuerterieruirrereeeeeete ettt 107
9-1  Estimated volume and height of canopy from reconstructed 3D space data. .................. 129
10-1  Contribution tEChNIGUES. ......coviiiiiiiiiiicieetee ettt 138
Co1  SOTEWATES. ..ttt ettt et sbt et sb et et e beeae e 155

10

www.manharaa.com




LIST OF FIGURES

Figure page
1-1 Concept design of an unmanned robot harvesting and autonomous scouting system....... 19
2-1  Vehicle appliCatiOns. .......ccouiiiiiiiieiiecie ettt ettt ettt ebeebeeebeebeeenbeenee e 45
2-2 RODOICS APPIICALIONS. ...veeeiiieeiiieeiieeeiieectee et e et e et e e et eeeeeeesteeestaeessseeensseeensseesnsseennns 45
2-3  SIFT feature deSCIIPLOT. ...ccuiiiieriieeiieriie et eeiie et e ette et e steeeteesaeeebeesseeesbeeseesnseeseesnseenseanns 45
2-4  SUREF 64 descriptor vectors at an intereSt POINL. ........c.eeeeveeeiieeeiieeriieeeieeesieeesveeeseeeeenns 45
2-5  Active CONtOUT MOAEL....c..oiiiiiiiiiiiiiierteee ettt 46
2-6  Active MmeSh MOEL. ....oouiiiiiiiii e 46
2-7  Pinhole camera MOEL. .........cocueiiiiiiiiiiiiieee s 46
2-8  INtrinSic Camera PATAIMELETS. ......eeeureerirreerrieeeieeesreeeseteeesseeesseeesseeesssaeessseeessseeesssessssseennns 46
2-9  Panorama from pure TOTAtION. ........cc.eerieeiuierieeiierie et esite et esieeeteesteeebeesaeesbeeseesnseeseees 47
2-10  HOMOZIAPNY. 1.ueiiieiiiieiie ettt ettt e e e e e e et eeeaaeessbaeessaeeenssaeesseeesseennns 47
21T WaAIPINE ..ttt ettt ettt ettt et e et e eeateeabeesseeeabeeseeeabeenseeenbeenseesnseenseesnseenseanns 47
2-12 COlOT COTTECLION PIOCESS. ..uvvreeurreeerreeerieesteeeateeesseeessseesssseessseessseeessaeessseeessseesssseesssseennns 48
2-13 TIME WATPIINE. c.eeeetieiieeiieeieeetteett e et eetteeteestteeeteessteesseesseeenseeseessseeseessseeseessseesaesnseeseanns 48
2-14  EPIPOLAr GEOMEIIY. . .eiiiiiieiiiieeiiee ettt e et etee et e et eeette e e e e e e taeesseeesstaeessseeensseeensseeessaennns 48
2-15  Four possible cases Of TeCONSIUCTION. ........ccuiiiuieriieeiieniieeiieie ettt et ere e 49
2-16 StETEO VISION SYSTEIMN. 1uvvieeiiieeiieeeiieeetieesteeeeteeestseeessseesssaeessaeesseeesssaeessseeessseeesssesessseennes 49
2-17 3D reconstruction of tree MOdEl. ........coceeviiiiiriiiiiieiieee e 49
2-18  Parallel-perspective StEr€0 MOSAIC. ...ccvueeruereeiieeiiieeiieeeiieeeieeeesteeessaeessaeeessseeessseeensseennns 50
2-19  AUZMENLE TEAIIEY. ..cuiiiiiiiiieii ettt ettt ettt e et e et e e beeenbeesaesnseensee e 50
2-20  Augmented reality With SLAM. . ....oooiiiiiiiiie e e 50
2-21  Measurement Of CANOPY. ...c.ueeruieriieiierieeiieetie et eriee et esteeeteesieesbeesteesnbeenseesnseeseesnseeseanns 51
-1 VENICLE SYSIEML. ..eiiiiiieiiieeiiee ettt et e ettt e et e e et e e e teeessaeesnbaeessseeensseessseeesseennns 58

11

www.manharaa.com




4-2 RODOUICS SYLEIML. ..cuvieuiiieiiieeiieeiteeite et teeite et et e et e sateeabeesteeenbeeseeeabeeseesnseeseesnseenseesnseenseans 58

4-3  OVETall PrOCEAUIES. ...cevvieeiiieeiiie ettt et eiee et e ettt e et e e et e e s e e e ssaeessbaeessseeessseeensseeesseennns 58
5-1  Histogram eqUaliZatiOn. ...........coouierireiiienieeiieeie ettt et siee et et e e teesaaeebeessbeeseesaaeenseees 64
5-2  EmDboSSING fIIter €ffECT. ..ooouiiiiiiieciieceeee e e 64
5-3  Leaf SEZMENLAtION. ....eiiriiiiiieiie ettt ettt ettt ettt et e et e st e e teesabe e bt e e nbeeseeenbeenbea e 65
5-4  Threshold adjuStMent. ..........ccouieiiiieiiiie et e et e e saeeesaeeeereeesaeeenns 65
5-5  Detect the center 0f SEZMENL. .......ccciiiiiiiriieiieiie ettt ettt e eeseesaeebee e 65
5-6  Morphological operations of leaf deteCtion. ........cc.ceccueieeiiiieriiieeiiie et 65
5-7  Fruit SEZMENTATION. ...eieriiiiiiiiieeiieeiieetteeite ettt e e teeetteeteesteeesseesebeeseessseenseessseenseessseenseanns 66
5-8  SeEMENLATION SIZE. ..eeeruvieeieiieeiiiieeiiieeiteeeitteeeteeeesteeestaeessseeessseeessseeesssaeensseeensseessseeesseennns 66
6-1  Life time of each feature for during SEqQUENCE. .........cceeevuieriieiiieniieieeeeeeee e 74
6-2  Sum of forces acting on €ach NOAE. ........ccceeeeiiiiiiiiiiiiieceee e 74
6-3  Virtual objects and 2D sinusoidal camera Mmotion. ...........cccueeevierieeiiienieeniienie e 74
6-4  Optical flow eStIMAION. ......eiiiiieeiiieciiie ettt et et e e sae e e aeeessaeeessaeeessaeesnseeenseeanns 75
6-5  Nodes generation from multiple IMaZES. ........cccveeriieriieriieiieeieeie e 75
6-6  Voronoi segmentation applied to each 1Mage. ..........ccceeeiiieriieeicieecie e 76
6-8  MATLAB code of recursive grouping function. .............cecceeeeieerieeiienieenieeieeiieeie e 77
6-9  Automatically generated hierarchical connection based on an image. ..........c.cccccveeenvennnns 77
6-10 Determined dominant fEAtUIES. ..........cocueiieriieiiiiieniieieeiee e 78
6-11 Forces acting on the considering NOAE. ..........ccueeeiuiieeiiiieiiieeeie et e aae e 78
6-12  Procedure to determine SUDNOAES. .........coveruiiiirieniieiiiieiteteee et 78
6-13  Camera motion model in the test for multilayered active tree.........ccceevieeeiiieeiieeenieenns 79
6-14  Simulation for rODUSENESS t0 NOTSE. .e..eeuveriieiieiiriieriieteet ettt 79
6-15 Simulation for robustness to 0CCIUSION. .........coiiiiiiiiiiiiiiiie e 80
7-1  Parallax problem occurring with non-planar objects which have depth............................ 87

12

www.manharaa.com




7-2  Basic steps Of 1Mage MOSAICING. ...c.eeevieruiieiieriieeiieeieeieeeeeeieeeteeteesateesbeessseeseesnseeseans 87

7-3  Diagram of algorithm StrUCTUIE. .......cccviieiiieeiiieeiie e e e e 88
7-4  Translation projection MOdel. ...........ccouiiiiiiiiiiiiiiiiee e 88
B T AN 112431 4 1<) | TSRSt 89
7-6  File NUMDETING. .....ooiiiiiiiieiiieiie ettt ettt et e s e e e teesateeabeeesseenseesaseenseanes 89
7-7  Configuation of image mosaicing SIMUIAtION. .........cccuvieriiieriiieeciee et 89
7-8  Evaluation of poSitioning €ITOT OF CAMETA. .....cc.eeeruierureerireriieeieenreesseesreesseessseesseesseesseenes 90
7-9  Cropping edge mosaicing €ffECt. .....cccviieiiiiiiiece e 90
7-10  Mosaicing wWith SINUSOIA MOTION. ..c..eeeiiiiiieiieiie ettt ete et e e eeeesaaeesee e 90
7-11 Mosaicing result from video clip recorded far enough away from citrus grove................ 90
7-12 Mosaicing result from 5 times zoomed in Video CliP.......ccoueeriieriieiieniieiieeieeieeee e, 91
7-13  Mosaicing result from 10 times zoomed in video clip.........cocvvieviiieniieeiiieeieeiee e, 91
8-1  Loop among projection, motion estimation and recoONStruCtion. ...........ccceeeveerererueenueens 107
8-2  Icosahedron base verteX model. ..........c.ooiuiiiiiiiiiiiiiiieieeeee e 107
8-3  Flow chart of an 8 point algorithm. ............ccocciiiiiiiiiiiiii e 108
8-4  Interest POINE SEIECLION. ....viiiiiiiieiieeeiieeetee ettt ettt e et esee e et e e e s teeeeseeesabaeessaaeesaeeesaeeenns 108
8-5  Interest points around edge are discarded. ...........coocieriiiiiiiniiiiie e 109
8-6  Re-projection error of unstable Interest POINts. ........ccceceveerciieeriieeciie e 109
8-7  StabIlItY Of VEITEX...ueiiiieiiiiiiieiie ettt ettt et ettt e et eebe e bt e esbeebeesnseesee e 109
8-8  Average statistical QUANTILY. ......cccuiieriiiiiiiie ettt e e e sre e et are e e aae e 110
8-9 3D reconstruction program using an 8 point algorithm in real-time. ............c.ccceeevvenennne 110
8-10 Increment of accumulated re-projection €ITOT. ........ccueeeciieeriiieeeiieecieeeeieeervee e e eeaee s 110
8-11 Sensitivity test of an 8 point algorithm with 4 pixel round-off error...........c.cccoevvrennennne 111
8-12  Reconstruction SIMUIATION. .........coiuiiiiiiiiiaiieiieeie ettt sttt e 111
8-13  Mismatched IndeX Problem..........cceeiiiiiiiiiiiiiieieeeee et 112

13

www.manharaa.com




8-14  Pliicker COOTAINALES SYSTEIM. ...eeiuiieiieiieeiieitieeieeeite et et ettt et eeteeereenaeessaeeseesnseesee e 112

8-15  Determination 0f an ObJECE VETTEX......ueieriieeiiieeiiiieeiieeeiieesieeesteeesteeesreeessaeeessseeenseeeenns 112
8-16  Simulation of reconstruction using a Pliicker coordinate system. ............cccceevveriurennenne 113
8-17 Configuration of camera on R1207 robot manipulator.............ccceeeeveieeiiieeriieeriee s 113
8-18  RobOt MOtION SIMUIATION. ....etieuiiiiiiiiieiteiesiet et 113
8-19  RODbOt CONLIOL SOTEWATE. ... .eeiuiiiiiiiiieie e 114
8-20  Camera CaliDIAtION. .....eeouiriiriiiieiiiectee ettt et 114
8-21 Detemination 0f CAMETa MOtION. .....cciuuiiiieiiiiiiieiie ettt ettt ettt e e beesiteeaee e 115
8-22  Feature MatChiNG........cccooiiiiiiiiii ettt ettt et ettt sibeeaee e 115
8-23  Reconstruction of 1C0SAhEdIONS. ......cc.eeiiiiiiiiiiiii e 116
8-24  Reconstruction of @ robot Manipulator. ..........c.eccuieiiieriiiiiienie et 117
8-25  ReCcONStrUCtION COMPATISON. .. .eiiiuuieeeiieeeieieeeiieeeitteeeitreesseeesseeesseeessseeessseeessseeassseesssseennns 117
8-20  OULAOOT EXPETIMEGNL. .....eeeiieiiieiieeiieeiieeteeetteeteesiteeteesteeeteesteeesbeeseeenseenseessseeseesnseanseanns 118
8-27  Captured sequential TMAZES. .....cccuveervieeiiieeiiieeieee e steeseeesteeesteeesbaeessaeeessseesssaeeenns 118
8-28 Matched correspondences between SEqUENCE TIMAZES. ........eevveeeveerieeeieenieeieeniieeeeenieens 118
8-29  ReCONSIIUCION TESULLS. ..coutiiiiiiiiiiiiieiie ettt st 119
8-30  Reconstruction CONTIIMATION. .....ec.viruieiieieriieteeie sttt 120
9-1 Procedure dia@ram. ..........cccueeeiiiiiiiie e e e 129
9-2  Coordinates Of LADAR SYStEIM. ...ccueeiiiiiiieiiieiiieeieeite ettt ettt sne e es 129
9-3  Path model of a vehicle in a virtual Erove. ..........cceeeviieiiiieeiie e 130
9-4  Virtual canopy MOAEL.........c.ooouiiiiiiiiiiiieieee ettt s 130
9-5  Search for a facet which a laser beam pPasses. ........cccvveeeiiiieriiieeiiieeiee e 130
9-6  Coordinates of LADAR during simulation. ..........ccccceeeieerieniieniienieeieeie e 131
9-7  Fully scanned visual SIMUIAtioN. ........cc.eeeiiiiiiiieiiiiecie e 131
9-8  Distances measured from SIMUIAtION. ....c..oecuivieriiiiiiriiiieieiee e 131

14

www.manharaa.com




9-9 RECONSITUCTION TESULLS. ..eeveiiiiiiiiieeeeieeeeeeeeeee ettt ee e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 131

9-10 Configuration of LADAR and GPS SYSteML.......ccccuiieiiiieriiieiiiecciee et 132
9-11  LADAR CaliDIatiON. ....eeitieiieiiiiiieieeiesiteste ettt sttt ettt eee 132
O-12  RAW LA ..ottt ettt ettt et et an 132
9-13  Adjusted control points for path. ..........cccoeviiiiiiiiiiie e 133
9-14 Reconstructed 3D space data in the A EOW . oo 133
9-15 Created tetrahedrons corresponding t0 CANOPY.......eevveerveeriieriieriierreeniieeieerieesreenseeseneas 133
0-16  Reconstructed eNtire SIrOVE. ......eieiiieeiiieeiiiieeiieeeeieeeeieeesieeesteeesaeeessaeeessseeessseesnsseessseens 134
9-17 Results applied to GIS SOFEWATIE. ......ccocuieriiiiiieiieeiieeee e 134
10-1  Virtual robot harvesting SIMUIAtION. ........cc.eeeiiiiiiiieeiieecee e e 138
A-2  Angles in triangle when edges are KNOWN. ..........ccocueviiieriiiiiienieeiieee e 143
A-3  Volume of a tetrahedron. ..........coouiiiiiiiii e 143

15

www.manharaa.com




Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
3D CITRUS GROVE RECONSTRUCTION
BASED ON EMPIRICAL MEASUREMENT
By
SangHoon Han
April 2010

Chair: Thomas F. Burks
Major: Agricultural and Biological Engineering

My study contributes to the development of unmanned and automated techniques
associated with two applications for citrus groves: ground-based scouting autonomous vehicles
and harvesting robot manipulators. The duty of ground-based scouting autonomous vehicles is to
collect global information, threading along alleyways in a grove, and harvesting robot systems
explore and map local fruit positions on a canopy using vision systems. Two major techniques
considered in my study are a global image mosaicing technique for the ground-based scouting
autonomous vehicle and a local 3D reconstruction for the harvesting robot manipulator. Vision-
based techniques follow common procedures related to features: feature detection, feature
tracking and feature matching.

Since it must be assumed that there are no artificial landmarks in canopy scenes, it is
necessary to extract features from leaves. A leaf detection algorithm was developed by
combinations of morphological operations designed to look for the center of the leaf. Leaf
detection can preserve the viability of dominant interest points by means of segmenting
individual. To be robust against the disturbance and disappearance of interest points, an active
mesh method is introduced. It was originally designed to detect shapes of objects, however, the

method is used in tracking with an assumption that objects are not deformable during
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consecutive frames. A multilayered active tree was invented to be more robust to noises by
managing interest points hierarchically. The multilayered active tree is not only stable, but it
determines the dominant features. Some of the matched sets are used in the estimation of optical
flow and reconstruction. For the horizontal movement, a parallax which causes discords between
images occurs. A sequential image mosaicing was implemented by cropping and stitching the
overlapped area between images. Difficulties of an 8 point algorithm were pointed out and a
Pliicker coordinates system which provides simpler and intuitive computations was suggested for
the 3D canopy reconstruction. An alternative way to reconstruct canopies was also conducted

through a LADAR and a GPS receiver.
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CHAPTER 1
INTRODUCTION

The objective of chapter is to describe the motivation why this research starts.

Citrus Groves in Florida

Cultivation such as pomiculture is a work that needs a bunch of labors and care. Increasing
labor costs is becoming a considerable part of reasons for increasing the production cost and
weakening competitiveness. Citrus is a huge industry of Florida, producing more than 70% of
US’s supply of citrus. Present citrus groves face with many issues. A unit grove is becoming
large scale by uniting small groves for years. This means work capacity per person increases.
Compared with increment of work duration, number of labor is decreasing. In practice, imported
labors are replacing scarce labor power. It is required for farm owners to equip temporary
accommodations and facilities on near to groves for labors for harvesting season. Furthermore,
employing non-US citizens has potentially immigration problems. Exposing to chemicals such as
spraying is also an obstacle which makes labors scruple at working. These challenges are being
the pressing reasons that demand unmanned systems in applications for citrus groves.

Unmanned System

A fully automated unmanned system should be able to detect and analyze the environment
by itself. Unmanned harvesting techniques do not only strengthen the price competition of farm
products on international markets, but also contribute to the technical development of industry.
Figure 1-1 shows a concept of a robot harvesting vehicle system. Two major applications can be

briefly divided — autonomous vehicle system and harvesting robot system.
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Autonomous Vehicles for Citrus Groves

The main function of autonomous vehicle systems requires a capability of navigating
alleyways by itself. There are many trials not only agricultural applications, but also urban
applications. My study focuses on only vision applications rather than automatic navigation.

Robotics for Citrus Groves

In practice, Florida oranges are being harvested by using mass product type machines
because 95% of oranges are used to produce juice rather than raw fruits. However, individual
fruit harvesting techniques are worth to develop for the fresh fruit market. A robot harvesting

system which automatically maps fruit positions and harvest them can be one of agricultural

applications about unmanned management.

Figure 1-1. Concept design of an unmanned robot harvesting and autonomous scouting system.
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CHAPTER 2
LITERATURE REVIEW

This chapter reviews the previous research conducted in the area of agricultural
applications and general concepts associated with the vision-based 3D reconstruction.

Agricultural Applications using Computer Vision System

Machine vision systems are a common acquisition device in various applications from
industry to everyday life. It is also coming to play a critical part in agricultural applications
associated with unmanned systems. Briefly, two kinds of platform can be considered in my work.

Autonomous Vehicle

Since most agricultural applications often cover a spacious field area, it is essential to
include machine vision in the autonomous vehicles. Younse (2005) applied a machine vision
system to an autonomous greenhouse sprayer, which tracks ground-based artificial landmarks as
shown in Figure 2-1 A). Subramanian (2006) developed a steering control system of an
unmanned tractor which combines with a camera and a laser range sensor as shown in Figure 2-1
B).

Harvesting Robot

Harvesting robot in Figure 2-2 A) is one of the most complicated agricultural applications
at present. In the case of detecting fruits, spectrum analysis or shape detection techniques can be
employed (Hannan 2004). Mehta (2006) studied a visual servo system which controls the
positioning of a grabber. A vision system together with a range sensor (Rovira-Mas 2006) can be
applied not only as a sensor to control, but also as a device to measure 3D space density maps

(Rovira-Mas 2003; Kise 2005).
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Requirements of Vision-Based 3D Reconstruction

When rendering a large or long 3D model using successive images, the whole image is
aligned with sub-images taken from different views. To form the continuous image, an image
mosaic technique can be adopted. The vision-based 3D reconstruction method consists of several
procedures as follows.
o Matching correspondences — Feature Extraction, Feature Tracking
o Image mosaicing — Homography, Registration,
o 3D reconstruction — Depth Information, Texture Mapping, Virtual Reality

The following will be a series of detailed literature reviews. Due to the enormous amount
of studies in the computer vision areas, only selected works will be cited, with a stronger focus

on techniques considered and related with the issues of this dissertation.

Feature-Based Image Processing

Since the feature extraction depends on conditions or situations of an image, there is no
unique way to apply it. It is necessary to take into account various methods before applying
feature extraction. The first step in processing, when dealing with sequential or multiple images,
establishes relationships between the different images.

Feature Matching

Feature matching searches for identical characteristics in multiple images, oftentimes
referred to as ‘correspondences’. The feature correspondences which should be known in order
to achieve a mosaic, can be roughly divided into two classes: area-based and feature-based. Since
the pixel-based method has weaknesses such as illumination, shape, occlusion, appearance or
local minimum, the feature-based method is normally preferred. In the feature extraction, various
features such as points (or colors), lines, areas or contents can be employed. For a planar image,

an edge detector or a corner detector are used in most cases.
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Area-based matching

Area-based matching or Template-based matching is a rudimentary method which assumes
that there exist similar regions between images. There are two different approaches: Normalized
Cross-Correlation (NCC) and Sum of Squared Differences (SSD). NCC measures the similarity,
and SSD measures the dissimilarity between two patch images.

Normalized Cross-Correlation: To observe similarity between patch images, Normalized
Cross-Correlation (NCC) is computed by subtracting the mean and dividing by the standard

deviation. The formula can be represented as,

Z (W - E(W))(I(i,j) - E(I(i,j) ))

CcC@, j)= v , _
CO=S By S (1, ~Ea, ) -

L g

where W is a sub-image and / is a template image. The sub-image should be larger than the
template image.

Sum of Squared Differences: Sum of Squared Differences (SSD) is based on inferential
statistics. A distance from a point to the mean of an image is a deviation. If the deviation is

squared, then we have the sum of squares for the image.

Esspu)=2 (1, (x; + ) = 1,(x)* = Xe,” . 2-2)

where u = (u,v) is the displacement, e, called the residual error. When a template patch image is

placed on a similar area, the result of computation has a pick point over the image. The
performance between NCC and SSD is the same.

Feature-based matching

Feature extraction is a process that determines a relationship between images in a local

image. A variety of features such as colors, lines, curves, patterns or multiple-combinations can
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be chosen, but mostly the point feature invariant to transformations and directions is used in
sequential images in which there is camera motion. The feature extraction technique is used for
motion detection, object tracking, feature matching, image mosaicing, panorama, 3D
reconstruction and object recognition.

Interest point (Harris corner detection) Naive: The corner detection devised by Harris
and Stephens is a universal approach used to detect point features, and many enhanced detection
techniques have been proposed based on the corner detection. A corner is defined with an
intersection between two edges, while an interest point is an invariable position to detect. Since
the detector does not detect only actual corners, an ‘interest point’ in general is referred to as a
‘feature’ more than a ‘corner’. In the literature, ‘corner’, ‘interest point’ and ‘feature’ are referred
to interchangeably.

One important assumptions of the corner detection is that it can be derived from
neighborhood points. The neighborhood of a feature should be different enough from another
neighborhood after moving. The approximation of the second derivative between a patch

window w and a shifted window w(dx,dy) is given by following the equation.

A oL
D(dx,dy)=LﬂM[Ax 4y]. where M = [ {i}[g 2hi(x, y)dx, dy . (2-3)
oy

M should have two large eigenvalues with respect to the interest point. If the eigenvalue has a
positive large number, it would be an edge. If both eigenvalues have zeros, it can be inferred
there is no feature. Since the calculation of the eigenvalue is computationally expensive, it can be

achieved by minimizing the following corner response function: (source: )

R=2, —x(A, +1,)* =det(M) — k trace’ (M), (2-4)
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where £ is a tunable sensitivity parameter. Since the corner detection itself is not very robust in
general, it frequently needs expert supervisions or redundancies introduced to prevent the effect
of individual error.

Color-based method

In the case of autonomous mobile robots which work indoors or in the industry, artificial
landmarks such as colors or specified patterns are employed to detect the location. Yoon (2001)
proposed an artificial landmark resistant to change caused by altering intensities or shapes. The
designed color checkered pattern uses a global/local histogram and an HSV color model which is
less affected by illumination. Since the histogram is invariable within the pattern, it is impervious
to noise.

Descriptor-based method

It is not enough for a single method to cope with incorrect matches caused by a variety of
conditions such as change of scale, rotation and illumination. To avoid these varieties,
particularly designed approaches have been suggested. The descriptor-based method is becoming
the most promising approach.

Scale invariant feature transform: A Scale Invariant Feature Transform (SIFT) which is
devised by Lowe (2004) is one of the advanced feature matching methods. The SIFT briefly
consists of a key point localization and an identified descriptor around the key point as shown in
Figure 2-3. The key point is determined by covering invariance to varieties. To detect a stable
location of a key point, a Difference of Gaussian (DoG) approach is used over the scale-space
representation of an original image. This convolution makes it resistant to scale variations. After
the localization, the key point’s orientation is assigned in order to cover rotational invariance.
The descriptor composed of 128 normalized vectors is computed by local gradient orientations

and magnitudes around the key point. The SIFT features have a lot of advantages such that they
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are invariant to scale and rotation, highly distinctive, resistant to distortions, occlusions, noises
and change of illumination. Due to its merits, many researchers are presently trying to apply it
increasing presently (Lepetit et al., 2004; Heikkila et al., 2005; Grapl et al., 2005; Mortensen et
al., 2005; Moreels et al., 2005). Ke et al. (2004) proposed a PCA-SIFT algorithm in order to
reduce dimensions of descriptors. They applied Principle Component Analysis (PCA) to the
normalized gradient patch instead of smoothly weighted histograms. Thus they insist that it
should be faster and more resistant than the original SIFT.

Speeded up robust features: Speeded Up Robust Features (SURF) devised by Bay et al.
(2006) is a descriptor-based feature matching method like SIFT. The descriptor illustrates
distribution of intensity such as the gradient around an interest point. Unlike SIFT, SURF is
designed to enhance computational speed by utilizing responses of the first order of Haar wavelet.
SUREF uses a Fast-Hessian detector for key point detection and Haar wavelet for descriptor. The
response of Haar wavelet is fundamentally invariant to illumination changes like shadow as well
as contrast invariant by taking the unit vector.

e Fast-Hessian Detector

Fast-Hessian is based on an approximation of a Hessian matrix. Given a point x = (x, y) in

an image, the Hessian matrix H(x,s) in x at scale s is defined as follows.

L. (x,s) L, (x,s)} 2-5)

Hxs)= {ny (x,8) L, (x,5)

where L _ (x,s) is the convolution of the Gaussian second order derivative .

e SURF Descriptor

SURF explores 64 sub areas while SIFT explores all pixels within the frame. This

simplification enhances not only computation speed but resistance because it is less sensitive to

25

www.manaraa.com



noise. The first step for a descriptor is to determine a reproducible orientation from the circular
neighborhood around the interest point. The next step is to extract a rectangular area along the
orientation and then determine the descriptor with respect to this area.
e Orientation
Consideration of the circular neighborhood yields invariance to rotation. First it computes
the response of the Haar wavelet at the circular neighborhood followed by determining the
dominant orientation based on distributed responses from the weighted Gaussian center. To keep
consistency of orientation, it is necessary to ascertain the appropriate size of the window through
empirical means.
e Descriptor
Descriptor vectors are computed within the rectangular area. The rectangular area angled
and centered on the interest point is extracted along the orientation determined in the previous
step. The extracted rectangle is divided again into subareas with a 4x4 grid and then a Haar
wavelet is performed at the sampling points distributed on the grid. Each subarea contains 4

descriptor vectors as follows.

Vi,./:[zdx Zdy Z Z‘dy

where de and Zdy are sums of the responses, and Z|dx| and Z‘d y‘ are sums of absolute

J (2-6)

dx

values of responses with respect to the X and Y axis. Therefore, the descriptor with respect to an
interest point has 64 vectors as shown in Figure 2-4.

Feature Tracking

Feature tracking is for matching correspondences in sequential images. The disparity
between features gives us depth information to compute a homography. A success of registration

and reconstruction depends on how well the features are tracked.
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Motion estimation

Optical flow: An optical flow is defined as a distinct motion of image intensities. There
are two major assumptions in the motion estimation. First, the brightness is steadily changed.

Second, there is no object moving individually in the scene. When an object moves dx, Jy in the

scene while o, the first assumption can be represented with Taylor series expansion.

olox oloy oloz ol ot
—t————+——

Ix+ox,y+0v,z+,t+)=1(x,y,z,t)+
(r+any+oy.z V=l ant s e a T oo

+0(x,y,z,t).  (2-7)

According to the second assumption that terms are constant, derivatives are zero.

oI ox oI dy ol oz ol ot

——t——t——+——=0

oxot dyot oot otor . (2-8)
LV, 41V, +1V. =1,

VIV =-I,
X N X v _]fl
I, I, 1, g -1,
S A S L (2-9)
I'c I‘ Izn VZ _It
AV =-B

This equation is called optical constraint. Since this equation has many solutions, more
constraints are needed. To determine the optical flow, many methods such as a Lucas-Kanade
method and a Horn-Schunck method are proposed.

Linear tracking model

LK tracker: A Lukas-Kanade method is one popular optical flow estimation. In this
differential method, it is assumed that information based on intensities and colors or objects is
not changed significantly. Assuming the optical flow of every pixel in the small window is the

same, the computation can be simplified with solving a linear equation. Although a solution is
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obtained with two points in a non-singular system, more points are more effective. For this over-
determined system, a least-square approximation is used in common. For points, a weight

function such as Gaussian is used.

z w(x, )1 1 u+ Z w(x, y)Iyzv = —z w(x, V)1 1,
X,y X,y X,y

(2-10)

X,y

Z w(x, y)[xzu + z w(x, ) 1, v= —Z w(x, ) 1, .
X,y Xy

The iteration also yields a better result. Yielded offsets in the computation are used to determine

a new window.

VI-V=-I,
I -1,
1?1 JTZ Ifz o —:1t2 | 2-11)
]"n ]J’n [Zn Vz - ]tn

AV =-B

To solve the taking pseudo inverse,
V=(4"4)"4"(-B)

-1

Vi Z Ixi ’ Z ]x‘ ]ZJ’, Z Ixi Izi - z IX[ ]t[ . (2_12)
Vy | T Z[xi[y,- z[y, Z]yi[zi _z[y,[t,-

v | D1, Yar 1| =Y,

Lukas-Kanade method is usually carried out in a coarse-to-fine iterative manner as SIFT. This
algorithm does not yield a very high density of flow vectors. The optical flow fades out quickly
across motion boundaries and the inner parts of large homogenous areas show little motion.
Therefore, it is comparatively resistant against the presence of noise. Rav-Acha et al. (2004) uses
a modification of the Lucas-Kanade for a direct 2D alignment.

Kalman filter: A Kalman filter that originated from a control theory is a traditional

tracking method, which estimates coefficients of linear equations. It is applied to tracking
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moving objects. Davison et al. (2003) emphasized that an Extended Kalman Filter (EKF) shows
a great success in estimating locations of the robot with a single camera.

Non-linear tracking model

There are many applications that linear models cannot cover.

Horn-Schunck tracker: A Horn-Schunck method is designed to solve an aperture
problem. A flow density is around a boundary, on the other hand, it is sensitive to noise.

Entended Kalman filter: An extended Kalman filter is for a non-linear version of the
linear Kalman filter. In some research, these techniques are combined to take each advantage.

Stochastic tracking model

Conditional density propagation: Isard et al. (1998) devised a CONditional DENSity
propagATION (CONDENSATION) algorithm based on a stochastic tracking for an active
contour. In this algorithm, each position of feature is estimated based on the probability in the
previous stage. The CONDENSATION algorithm applies factored samples iteratively to

compute the a posteriori density. In the iterative step, it starts with a sample set s, which
represents a posteriori density from the previous step ¢ —1. Applied factored sampling, a set s,

formed from s, which describes the a priori density p(x, | Z, ;) is represented as follows

p(x 1 Z,)p(z, | x) o p(x, | Z,). (2-13)
While one formulation in the Kalman filter tracks only one feature, CONDESATION can expand
the number of features. It is resistant against occlusions and temporary disappearances. Meier et
al. (1999) applied this algorithm to the content-based tracking for mobile robots.

Geometric tracking model

Tracking models, as reviewed before, are based only on extracted features from images.

Geometric tracking models such as an active contour and an active mesh refer to geometric
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relationships among the features (nodes) as well as image-based features. These terms are
defined as energy equations and controlled by weights. The active contour method is effective in
detecting shapes or tracking geometric deformation.

Active contour: An active contour is an iterative framework delineating an object profile
by minimizing energy which is defined with image properties. The energy is categorized by two
aspects: internal and external energy.

e The external energy is minimal when a contour stays at the boundary of an object. It is
measured by taking gradient between pixels.

e The internal energy is minimal when a contour matches a desired shape. It is based on an
elongation (elastic force) or a curvature (bending force) deformation.

This approach that quantifies morphological constraints with energy has a potentiality which
extends to other approaches like shape detection as well as tracking. Figure 2-5 shows an
example result from an active contour.

Active mesh: Molly, D. (2000) proposed an active mesh method which extends from an
active contour. While an active contour method defines a one dimensional relationship among
nodes, an active mesh method defines multiple relationships among the closest nodes as shown
in Figure 2-6. A Delaunay triangulation is one of typical grouping methods for nearby nodes.
The active mesh is effective in the background of a scene which is not deformed or extracting
moving objects from the background. Therebys, it is applied to video compression as well as
tracking.

While feature extractions in the active contour have been conducted every frame, Griffin,
(2001) suggested a content-based active mesh method. This approach finds node positions that
minimize errors between the patch image and the reference image. Since it is assumed that each
patch image is a planar (affine transformation), it does not seem to be effective in a sudden

occlusion.
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Structure and Motion Estimation

Once correspondences are determined through various image processing methods
mentioned in the previous section, then the camera extrinsic parameters and the depth of features
based on the correspondences can be estimated. This reconstruction is often called Structure
From Motion (SFM). In this section, the basic theory behind the procedure and some
applications which expand those concepts is discussed. A camera is a device which projects a 3D
scene into a 2D image. Therefore, a camera can be modeled as a projection matrix. (source: Ma
et al. 2004)

Camera Model and Geometry
Pinhole camera model

Throughout my study, an ideal pinhole camera model is used, which is referred to

generally. As shown in Figure 2-7, the projection center C is placed as far as focal length f on
the principle axis perpendicular to the center ¢ of an image plane ‘R (retinal plane). An image
point m € R’ , which intersects the image plane R and a line connecting the projection center
C and an object M € R” in the scene, can be simply modeled by a projection matrix I, € R
as
m=T,M. (2-14)

Intrinsic parameters

For an input data m € R* from a CCD sensor to indicate projected point m e R*, a
transformation matrix K, € R™ between them, which is called the intrinsic parameters of the

camera, is needed. The intrinsic parameters are specified with several fixed properties of the

camera.
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m=K, m
X S o X
fx X 11 (2_15)
y = fy Oy yH
1 1 1

where f, f, are focal length with respect to x, y axis. o, o, are the center of an image axis.

s is a skew angle as shown in Figure 2-8.
Extrinsic parameters
A 3D point M can be represented with a reference point M’ by a pose matrix with respect

to the base camera.

R Ty
=l 1M (2-16)

where R is a rotation matrix and T is a translation vector. If a camera pose has changed, the
reference point is simply given by taking an inverse of the pose, which is called the extrinsic

parameters of a camera K, e R*.

(2-17)

Camera projection matrix: Combining those specified parameter matrices, a generalized

camera projection matrix can be obtained:

f 1 000 X
S o
’ i R" -R'T|Y
y|= , 0,10 1.0 0 0 : 7
1 0010 : (2-18)
m:KintHOKextM
m=K,[R” —R'TM
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Image Mosaic

Since cameras have a limited view, it is necessary to merge multiple images to be a wide
single like Figure 2-9. Image mosaicing is a framework that builds a high resolution image with
multiple subimages. Features extracted from the duplicated area are used to estimate camera
motions. Appropriate warping transformation is carried out based on the estimated camera
motion. The warped image can be folded exactly. Approach depends on the camera motion type.

Motion type

Parallax: A parallax is a phenomenon that occurs when the background of an object is
changed with respect to view points. Since this effect is based on a distance from the object, the
optical flow is also used to measure the distance of objects. This effect does not happen during a
pure rotation.

Pure rotation: An image mosaic uses either a cylindrical type or a spherical type of
projection model in general. These projection models have a single common camera center.
Since no parallax happens with the models, it is simple to achieve a mosaicing with pixel-based
matching methods. If images are taken with translational motion, the distance of objects and the
estimation of camera motion should be considered.

Estimation of motion

To combine images, there should be an overlapped area between images. For the
estimation of camera motions, a homography is widely used.

Homography: A homography in computer vision is defined as a collineation which maps
between sets of correspondences obtained from different planes. This relationship can be

represented with a transformation matrix HII, with respect to plane II, as shown in Figure

2-10. There are a lot of applications using homography and it provides ways of composing

images or video frames.
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The features may be obtained from a plane such as an artificial structure on occasion. In
this degenerative configuration, an 8 point algorithm would not give a unique solution. Thus

different approaches are needed. A plane equation can be represented as follows
N'M=nx+ny+nz=d, %NTM:I, (2-19)

where d is the distance from the origin to the plane. Substituting this to the rigid-body equation,

we obtain
M, =RM, +T=RM, + T%NTM1 = (R+%TNTJMI =HM,, H= R+%TNT, (2-20)

where H € R* is called a collineation or a homography. It is a 3x3 homogeneous matrix whose
rank is 2. However, there is no information that extracted features are obtained from a plane. If a
camera moves with pure rotation, i.e. T =0 or a camera is infinitely far away from objects i.e.
d = o, the homography becomes a function of only R . Each depth of features d and planar
structure N to determine the homography do not matter. Thus many image mosaicing methods
have been carried out with image sets taken from purely rotating camera.
m,Rm, =0. (2-21)

Composition

Warping: Warping is a process which deforms an image to fit to a projection model. Since
images taken with different view point do not have the same projection plane, the overlapped
areas between images are not identical. Deforming images based on the base camera motion,
images can be combined with seams as shown in Figure 2-11

Blending: When mosaicing with images taken from outdoors, the boundary edges between
images aligned might be salient due to changes of illumination. As shown in Figure 2-12, Hasler

et al. (2004) proposed a method to correct for color differences between images stitched together.
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The color correction consists in retrieving linearized relative scenes referred to data from
uncalibrated images by estimating the opto-electronic conversion function (OECF) and by
correcting for exposure, white-point, and vignetting variations between the individual pictures.

Applied techniques

A mosaicing technique is used in various applications such as topological terrain maps,
satellite imagery, high resolution medical images, video compression and so on.

Manifold: Jun J.C. (2004) achieved an image mosaicing and 3D reconstruction by using a
manifold projection. The manifold projection contains an individual projection plane every
frame. He assumed that the path of a camera is two dimensional, and the extrinsic parameters are
estimated by measuring the optical flow with three images. However, incongruity on the
projection plane is incurred as much as the difference of depth. Even though it cut off a discord
boundary with a curve estimated with the same pixels, errors are incurred in the distinct
non-planar scene because it approximates the boundary of the projection with compensation
between intersections.

Time warping: Rav-Acha et al. (2004) estimated depth information by means of time
warping, which expands a time axis from an image plane. To simplify the computation, a camera
moves in a one dimensional direction with a constant speed and the camera view is orthogonal to
the path. Therefore, no transformation is used. Since the assumed constant moving speed forms a
line on the time axis, the depth of each feature can be estimated as much as the line is declined.
That is, points that are too far away become almost a vertical line, and the closer points become
the declined line as shown in Fig 2-13. The feature patches are divided by a Voronoi diagram
and set the width of patch as much as the depth. Since the depth information is represented by a
line on the time axis, it can be estimated even though features disappear while tracking

sometimes.
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3D Reconstruction

Correspondences do not generally come from only a plane. Thus a homography cannot be
applied in terms of arbitrary motions of the camera. This section induces equations which
represent the general relationship between correspondences from a pair of images based on an
epipolar geometry. (source: Ma et al. 2004)

Estimation of structure and motion

Depth information with a camera is estimated by using correspondences taken from over
two images. For these correspondences to reflect actual features of an object, those should

basically satisfy an epipolar constraint. The epipolar geometry can be described through several

ways.

o If neither intrinsic nor extrinsic parameters of a camera are known, the epipolar geometry
is represented by a Fundamental matrix.

o If only intrinsic parameters of a camera are known, the epipolar geometry is represented by
an Essential matrix.

o If both intrinsic and extrinsic parameters of a camera are known, the epipolar geometry is

represented by a Projection matrix.

The relative motion (rotation and translation) of a camera can be estimated with the epipolar
constraint. Once the camera extrinsic parameters are determined, spatial positions of features are
also determined with a transformation matrix easily.

Estimation of essential matrix

Epipolar constraint: As shown in Figure 2-14, when calibrated correspondences x on
each image plane reflect a spatial point X, the relation between them can be represented with a
multiplication of matrix as

Jm =M M, (2-22)
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where 4 € R” isascalarand Il = [I O] is a camera projection matrix. Setting one of two
cameras as a reference frame, a spatial point M, € R’ with respect to the other camera o, can
also be represented with a relative pose R, T and an identical point M, € R* with respect to
the reference frame o, as
M,=RM, +T. (2-23)
Since M, = 4,m,, where m € R’ is homogenous coordinates, the relationship of
correspondences is represented as follows once again.
Am,=RAm, +T. (2-24)
To remove scalars A, which denote physical depths, applying a skew matrix T of the vector T
to both sides, it becomes
A, Tm, =TRAm,, (2-25)
where Tm, = Txm, . Since Tx, is perpendicular to x,, m," Tm, = 0. Multiplying x,T to both
sides again, the correspondences have the following relationship regardless of scalars 4.,
sz’i“le =0 or m,Em, =0, (2-26)
which is called an epipolar constraint and E € 3% is called an essential matrix. Since
det(E) =0, it is singular and a homogenous quantity. It has only five degrees of freedom: 3 in

rotation and 2 in translation up to scalar. Since E contains only R and T information, solving
the E that satisfies the equation with given correspondences, we can determine R and T'.

Estimation of motion

To solve E, the epipolar constraint equation is modified into a linear form.

A'E* =0, (2-27)
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K 7 9 -
where E’ =[e“ €, € €, €, €, €; ey 633] e R is referred to as the stacked

version of E. A" =m, ®m, e R™ and operator ® denotes a Kronecker product. For example,

given mlz(xl B2 Z1)Tam2:(x2 V) Zz)T>

m, ®m, = (xlxz XYy XZy WXy WYy Nz 5% 41, lez)-
A solution of E satisfying the equation is an eigenvector of A which corresponds to an
eigenvalue equal to zero. Applying Singular Value Decomposition (SVD) to the coefficient

matrix A, then the last column of V which corresponds to zero of the eigenvalue becomes E .
E=U2V’
(2-28)
=TR
where T=UR_(+Z)U”,R = XUR_(+Z)V". There is now a pair of motions. However, in
practice the eigenvalue would not be zero exactly. Therefore, E is determined by minimizing the

norm of difference between the estimated solution E = Udiag(2,,4,,4;)V" and the exact
solution E, = Udiag(o,,0,,0)V".
e~ 2
m@E—Ew. (2-29)

Notice that — E also satisfies the same set of the epipolar constraint resulted from E . Thus there
are four possible cases and three of them from B) to D) are unrealistic as shown in Figure 2-15.
A realistic one A) can be chosen by inspecting positive depth.

Random sample consensus: As seen before, the estimation of the relationship between
correspondences is carried out with the assumption that the measurement of feature points is

exact. In practice, however, the correspondences are exposed enough to noises, and a little
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contamination of noises can make the final results useless. The problem is that it is difficult to
segment the set of input data into inliers and outliers before the exact solution is obtained. One
solution is RANdom SAmple Consensus (RANSAC), which is a popular algorithm in the
computer vision area. This algorithm is an iterative method to estimate a mathematical model
from a set of data and it can be applied to various problems. RANSAC also assumes that in a
given set of inliers there exists a process which describes the data or estimates an appropriate
model. The objective of this algorithm is to segment observed input data into inliers fitting to
parameters of a model and outliers such as noise. The outlier can be caused by amplified noises,
coarse measurements or incorrect hypotheses. The segmented inliers are used not only to refine
the solution, but will be used to reconstruct the structure of a scene in the continuous frame in
which it is important for features to survive as long as possible.

RANSAC is iteratively carried out by randomly selecting a subset of data. The subset of
data is hypothetical inliers and they are tested as the following steps:

1. take a subset of hypothetical inliers from observed input data and estimate hypothetical
parameters of a model.

2. count the number of data which fit to the model by applying other data to the model.
3.  after repeating these steps, choose a hypothetical model which has large number of data.
4.  segment observed data into inliers and outliers by applying data to the chosen model.

In the case of a Homography as seen before, when all feature points are not extracted from
a plane, the homography induced from the plane creates a virtual parallax. Since a homography
assumes that points originate from a plan, it is effective for RANSAC to segment feature points
into the points originated from a plane, i.e. inliers and the others. RANSAC is designed so that it
can just estimate one model for a specific set of data. In case that one is multiplying a

homography, therefore, RANSAC should be applied for each homography individually.
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One advantage of RANSAC is the ability to robustly estimate parameters of a model with a
high accuracy even in the presence a significant number of outliers. In contrast, one disadvantage
is that it requires thresholds specified for each problem. There is no time limit to repeat the
iteration. When one stops at some iteration, there is no guarantee that it would be an optimal
solution.

Bundle adjustment: A bundle adjustment is one kind of optimization techniques. It has
increasingly been used for the last step of feature-based 3D reconstruction in the computer vision
area. This method is used to minimize the distance between observed feature points and re-

projected feature points in terms of estimated parameters of a camera model.

min Y, > v, d(P(x;,X,).x,)" (2-30)

i=l j=I
where P(x;,X,) is the evaluated projection of point X, on image x; and d(x,y) denotes the

Euclidean distance between image coordinates. When the minimization problem is solved, the
equation may have a sparse block due to irrelevances between points and camera. Thus a
Levenberg-Marquardt algorithm is also used in the optimization problem, which robustly
converges even if the initial guesses begin far away from the final minima.
Estimation of structure

As seen before, given more than eight points, an 8 point algorithm can determine the

relative R and T between cameras accompanied with a scale factor y e R*. If y =1, the

obtained pose is equal to a translation with unit length. Now that the motion of a camera is
determined, the structure can be reconstructed based on the pose and the correspondences used
for an 8 point algorithm (source: Ma et al, 2004). Rewriting the basic rigid body equation (2-24)

in terms of these parameters,
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Ax]=ARx! +)T,j=12,...,n. (2-31)
Either A, or A, is redundant. To eliminate A,, modifying the basic rigid-body equation by
multiplying X, to both sides, we obtain
AX,Rx,’ +%,’T=0,j=12,...,n, (2-32)

which can be represented with a linear equation as
. o 1A
ML =[RR:) 1] | =0, (2-33)
/4

where M’ € R¥>?, A/ e R?, for all j=12,---,n. To give a unique solution, M’ should have
rank 1, which is not the case that points lie on the base line between the center of the cameras o,,

0,,i.e. X,T=0. To simplify the equation, defining M € RV L e R"" for j as

=l a0, (2-34)
R 0 0 0 0 T
0 XRx; 0 0 0 T
M=| 0 ' 0 0 : (2-35)
0 0 )'Rx” 0 T
0 0 0 0 Rx! KT

We obtain the same linear equation

MA=0, (2-36)
where a vector A which represents the depth of each correspondence up to a single universal
scale is an eigenvector of MM corresponding to the minimum eigenvalue. To obtain a
non-trivial solution of &, M should be zero. As we have done at the essential matrix, the

solution is also obtained by applying SVD in which the column of M corresponding to the

minimum eigenvalue becomes the structure position. Since these spatial positions are solved
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with the assumption that the translation was normalized, actual positions are determined by
multiplying the actual distance between two cameras.

Applied techniques

Since 3D reconstruction is essentially based on a pair of images, a stereo vision system is
widely used as shown in Figure 2-16. However, a moving single vision system can also provide
multiple view, some researchers try to utilize it for 3D reconstruction.

Multiple camera: Depth is estimated by measuring a disparity between images. Since a
stereo vision system provides two images with known configurations, a reconstruction can be
achieved with stationary motion. It is the best way to be robust against potential errors.

Kise et al (2006) applied a stereo system to a weed detection and a furrow reconstruction.
They assumed the camera was fixed on a vehicle which moves straight forward. Three or more
cameras can be also used for measuring depth (Kim 2003; Klechenov et al. 2002). Shlyakhter et
al (2001) rendered a 3D vegetation model based on multiple real images. Each of input image is
segmented into a tree and a background. Silhouettes are used to construct a visual hull. Figure
2-17 shows that their system constructs a tree skeleton. This research assumes the extrinsic
parameters are known. The surface of the model is formed based on Voronoi approximation.

Single Camera: The cost of a stereo system is expensive, and it is complicated to
implement. Many researchers are trying to overcome such potential errors which occur with a
single camera. The issue in a single camera is mainly associated with the estimation of a camera
motion.

Dornaika, F. (2001) tried to overcome a parallax problem which makes occlusions during
translational motions. Nevertheless, this parallax problem also provides the depth information.
Zhu (2003) estimated depth information through stereo mosaic images as before. Taking images

of non-planar scene with translational motion, the left and right sides of an image with respect to
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moving direction show the different lateral face of a structure. The stereo mosaic images
generated by the left and right strip provide disparity information about correspondences as
shown Figure 2-18.

Augmented reality: An Augmented Reality (AR) is a rising field of computer research
which is associated with a combination of generated 3D graphics and real image as shown in
Figure 2-19. Mostly fiducial markers are used to make it easy to estimate the camera motion.
Once particular markers are detected, 3D models are mapped based on the coordinates of
markers.

Simultaneous localization and mapping: A Simultaneous Localization and Mapping
(SLAM) is a technique mostly used by autonomous vehicle systems which navigate in the
unknown environment. This kind of machine requires abilities to keep tracking its location and
to generate mapped environments accurately. Klein et al. (2007) showed state-of-the art
advances in terms of markerless tracking and mapping. Markerless means that they keep
generating new markers from new features, not particular fixed markers. They used enhanced-
Kalman filter SLAM for predicting features. Their approach keeps many key frames as ground
truth. Figure 2-20 shows features which are tracked and mapped on a real image.

Different approaches

Various range sensors such as laser range sensor or an ultrasonic sensor can be used to
measure a depth in remote sensing. Ground-based remote sensing techniques have been studied
using laser range sensors or ultrasonic sensors for the last half-decade.

Laser Detection And Ranging (LADAR): Even though aerial-based remote sensing has a
limitation to measure a depth (height of canopy), Meron et al. (2000) studied measurement of the
shape and volume of the canopy with aerial photogrammetry. However, a range sensor is more

popular with a tree-specific management. Wei et al. (2004) developed a system measuring the

43

www.manaraa.com



volume of the citrus canopy using multiple laser scanners. As shown in Figure 2-21 A), their
system scans like a semicircle, but the beam source moves along the guide frame which is fixed
on the ground. They designed the system for only one canopy.

Ultrasonic sensor: An ultrasonic sensor can also be considered to measure the volume of
the canopy. Zaman et al. (2005) developed a measurement system with an ultrasonic sensor and
a DGPS receiver. Several pieces of ultrasonic sensors are attached to a pole on a moving trailer
instead of a moving the direction of sources as shown in Figure 2-21 B). Tumbo et al. (2001)
compared correlations among laser, ultrasonic and manual measurements. They concluded that a
laser measurement can provide a good estimation of canopy volumes especially in a grove where
there are significant numbers of partially defoliated trees or small replants. The other advantage
of the laser measurement over an ultrasonic system may be the high speed of data acquisition
with the former.

So far, successful papers have been reviewed. These papers are achieved under their
assumptions. It is important to take into account whether or not their assumptions are suitable

enough to the field.
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Figure 2-1. Vehicle applications. A) Six-wheel greenhouse sprayer (Younse, 2005). B)
Autonomous tractor (Subramanian, 2005).

Figure 2-2. Robotics applications. A) Vision-based harvesting robot (Hannan et al., 2004). B)
Vision system for aiming fruit (Hannan et al., 2004).
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Figure 2-3. SIFT feature descriptor (Lowe, 2004).
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Figure 2-9. Panorama from pure rotation.
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Figure 2-10. Homography (source: Ma, 2004).
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Figure 2-11. Warping. A) Warping model. B) Registration after warping (Kanazawa, 2004).
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Figure 2-12. Color correction process (Hasler et al., 2004). A) Original mosaic. B) Exposure
compensation by extrinsic parameter. C) Exposure compensation and white balance
with polynomial OECF. D) Exposure compensation and white balance with Laguerre

OECF.
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Figure 2-13. Time warping (Rav-Acha. et al., 2004). A) Features movement in time axis. B)
Patches divided by Voronoi diagram.
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Figure 2-14. Epipolar geometry (source: Ma et al., 2004).
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Figure 2-15. Four possible cases of reconstruction (source: Ma, 2004).

Figure 2-16. Stereo vision system (Kise et al., 2006).

Figure 2-17. 3D reconstruction of tree model (Shlyakhter et al., 2001).
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Figure 2-21. Measurement of canopy. Measurement of canopy with A) laser sensors (Wei et al.,
2004), and with B) ultrasonic sensors (Zaman et al., 2005).
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CHAPTER 3
OBJECTIVES

Objective Statement

The overall objective of this dissertation is to develop techniques required to generate a 3D

canopy model based on an actual citrus grove.
Scope

These techniques can be used for scouting autonomous vehicle systems to inspect disease
or growth status of plants throughout a global grove or for a harvesting robot systems to track
and map fruit positions within a local canopy. Moreover, the 3D canopy model can provide
farmers with a visual interface to manipulate unmanned systems remotely.

In an effort to generate 3D models, range sensors could be used as well. However, vision
systems such as cameras are more commonly used. In my study, the primary focus will be on
vision systems. Feature points obtained from images are approximated to vertices which forms a
surface of 3D canopy models. Since a single image cannot cover the whole canopy, a wide
panoramic image should be prepared to map the image on the surface of 3D models. Therefore,
image mosaicing approach is developed to make a panoramic image, so that 3D models can be
rendered. To achieve these goals, additional sub-objectives are determined as follows:

Sub objectives
Generating a mosaic image of a grove scene

e Develop a feature extracting method customized for a grove scene, including image
enhancements.

e Develop a feature tracking method which is robust against a parallax problem. Features
tracked contribute to both a determination of the optical flow and registration for

mosaicing.

e (Generate a wide panorama image of a grove scene, including blending, which can be
useful for a scouting vehicle system.
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3D canopy models

Reconstruct the surface of an actual canopy based on empirical measurements taken from both a
vision system and a range sensor system. Motion models of the vision system and the
range sensor system are associated with a scouting vehicle system and a harvesting robot
system, respectively.
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CHAPTER 4
METHODS AND PROCEDURES

The objective of this chapter is to describe the technical procedures to meet each
sub-objective.

Introduction

Before describing technical procedures, it is necessarily to review application scenarios
and limitations under which techniques were designed. My study can be applied to two different
agricultural applications in a citrus grove: 1) scouting system and 2) a harvesting system. Each
scenario is briefly discussed in following sub-sections.

Application Scenarios
Scouting autonomous vehicle system

It is not important what type of vehicle is used in terms of gathering information. A frontal
steering type shown in Figure 4-1 is assumed in my study. When a frontal steering vehicle tries
to change directions, the rear axle has the least variation in coordinate position with respect to
the lateral side of body. Therefore, it is assumed that sensors such as cameras or range sensors
will be mounted on near the rear axle of vehicle.

As the vehicle gathers information from the canopy, moving along alleyways in a grove, it
is assumed that the vehicle moves in a straight line motion and the camera is fixed facing the
canopy in direction Z, orthogonal to the moving direction X as shown in Figure 4-1 B).
Therefore, it is also assumed that lateral variations are ignored even though the vehicle may
oscillate upward and downward.

Harvesting robot

It is not critical what type of robot is used for harvesting. An R1207 which has a series of

axial-rotary joints is used for my study as shown in Figure 4-2 A). Various devices such as a
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gripper or sensors can be mounted on the end-effector of robot. The mounting position of these
devices on the end-effector is not important, as long as all extrinsic parameters are properly
accounted for.

A robot gathers images of the canopy, passing through various positions around the canopy
as shown in Figure 4-2 B). It is assumed that the base trailer, which supports a robot system, is
stationary while the robot is acquiring data. All techniques in my study were designed by
assuming following environments and conditions.

Assumptions and Limitations

Citrus canopy scene

Only citrus canopies and a citrus grove are considered as a target object. It is also assumed
that there are only stationary citrus leaves without any artificial structures or moving objects in
the scene. Other severe outdoor conditions such as direct backlights and windy conditions are
also ignored.

Video frame image

Image quality does not matter as long as features are discernable. However, image filtering
techniques were designed for the RGB color images to enhance feature extraction. Since most
image processing techniques developed in my study are designed for sequential images and
implementations are considered to work in real-time applications, it is assumed that vision
systems can record video clips.

Single vision system

Since a reconstruction associated with vision systems are typically carried out using on a
two-view geometry, where two or more images are required. As a result, stereo vision systems
are widely used for a reconstruction. Since a stereo vision system can carry out reconstruction

under stationary conditions, it could be appropriate for mobile vehicles scouting. The
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performance of reconstruction using a stereo vision system is strongly influenced by our ability
to match image features. To insure high performance in matching, both cameras must be able to
provide similar quality images. When considering robotic manipulator applications, one must
consider whether the weight, size or volume of the stereo camera system will hinder robot
maneuverability. As the robot harvest the fruit, it will continuously be moving in and out of the
canopy. Therefore, a light weight low profile sensor systems is the best. Therefore, my study
uses a single camera vision system. Parts of frames are saved as base frames to get multiple
views during exploring. Base frames are used until correspondences remain enough between
frames.

Motion model and large objects than view

Since alleyways in an ordinary citrus grove are very long with respect to camera field of
view, a single camera cannot capture the whole scene with sufficient detail. Therefore, we need
to develop techniques that can reconstruct the whole canopy from successive images. Most
literature which deals with 3D reconstruction has demonstrated their results in scenes where the
whole objects are shown in every view. In this case, there is no problem to reconstruct objects
with successful matching features. However, in the case of a canopy scene, since initial features
extracted from the base frame are supposed to disappear at other frames taken from different
views, it is necessary to continuously track features along the frames. This is especially true for
the base features, which are used for the estimation of extrinsic camera parameters, must be
propagated precisely.

Methods and Procedures

The process using an image can be briefly categorized into two parts: image processing

and geometric calculation. Image processing deals with features in three steps: Feature detection,

Feature tracking and Feature matching.
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A feature detection algorithm (Chap.5) extracts meaningful features from an image
obtained from vision systems. Feature tracking (Chap.6) monitors and retains the change of
feature position in the image coordinates during sequential images. It is also used to measure
optical flow. Feature matching is used to match indices of features between images. Once an
index of features is arranged, then geometric applications such as image mosaicing (Chap.7) or
3D reconstruction (Chap.8) can be conducted. Sequential image mosaicing creates a wide
panoramic image by means of stitching sequential images based on the optical flow. The wide
image can be used for texture mapping images on virtual canopy models. A 3D reconstruction of
a canopy surface is carried out with correspondences from feature matching. In addition,
alternative 3D reconstruction using a LADAR & GPS (Chap.9) is conducted. The relationship
among these procedures is shown in Figure 4-3. The 3D reconstruction can then be implemented
to work with the harvesting robot model, and sequential image mosaicing and 3D reconstruction
based on a LADAR & GPS for the autonomous scouting vehicle model.

Conclusions

This chapter has briefly reviewed the applications and assumptions considered in my work.

Technical details of these topics and conclusions are discussed in next all chapters.
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Figure 4-1. Vehicle system. A) Scouting autonomous vehicle (Subramanian, V., 2006). B)
Motion model of vehicle.

A — | a ‘B
Figure 4-2. Robotics sytem. A) R1207 robot manipulator. B) Motion model of robot.

4 -\

o )

Figure 4-3. Overall procedures.
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CHAPTER 5
FEATURE DETECTION

The objective of this chapter is extracting features from canopy scenes.

Introduction

It is more difficult to extract features from a natural landmark scene than an artificial
well-structured scene. Most feature-based image processing methods have tried to find and
extract features from salient artificial landmarks such as buildings, roads, etc. Natural landmarks
like trees were considered more difficult objects. In my study, it cannot be assumed that there
will always be artificial landmarks in a grove scene. Consequently, feature detection should be
able to extract features from a canopy scene which consists only of leaves or fruit. A ripe piece
of fruit could be a good feature because it can be segmented by color. However, image
processing in my study cannot depend solely on harvest seasons.

Methods and Procedures

In my study, a ‘feature’ denotes a point feature. A corner is a feature used commonly
because it is invariant to directions. A Harris corner detection method is basically used for
feature detection. Initial feature points used for tracking are selected by using Harris corner
detection. Harris corner detection used here allows us to set the number of corners and the
minimum distance among corner points. The output of this detector has different results based on
the region of interest because its output depends on a threshold which has to be applied in a
gradient based on the given image. However, the image quality influences the corner detection
directly. Therefore, it is necessary to maintain uniform image quality through the use of image

filters.
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Image Enhancement

Change in illumination which occurs outdoors influences the uniformity of image quality.
Ordinary cameras are designed to adjust brightness and contrast automatically. In the case of an
image obtained under strong sunlight or backlight, the contrast of the image becomes strong, or
the histogram distribution is prone to be biased. Therefore, features may not be detected
uniformly or sufficiently.

Image filtering is used to equalize and enhance image quality acquired from a camera. To
make feature extraction clear, several image enhancement techniques such as histogram
equalization and sharpening can be applied. The simplest way to be invariant to illumination is to
convert RGB into HSV color space, which is a linear transformation. The other way is to
equalize histogram distribution. Figure 5-1 shows that the shadowed area becomes enhanced
though histogram equalization.

Another method is to use an embossing filter which regulates contrast and emphasizes
edges. An example of the effect of the embossing filter is shown in Figure 5-2. Figure 5-2 A)
shows corners detected from a backlit image. Few corners were detected in the shadowed area.
On the other side, corners were detected uniformly from an embossing filtered image as shown
in Figure 5-2 B). Results from the optical flow based on the corner detection were shown in
Figure 5-2 C) and D). Figure 5-2 D) shows that an embossing filter gives more chances to detect
features in a backlit image. These filtering combinations are helpful to keep a uniform image
even with backlit scenes.

Leaf Detection

As long as a camera moves, features are prone to disappear. Therefore, robust features are
needed that are able to withstand this disappearance. The aim of this approach is to find out the

best combination of morphological operations at the initial step so that the best feature point is
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chosen and it will last as long as possible. Features such as the tip and junction of a leaf could be
promising features, but it seems that it is not only unstable but also expensive to calculate during
the sequence.

After enhancing image quality, an opening operation is applied, which is a combination of
erosion and dilation. An opening operation can be expressed with

AoB=(A®B)®B, (5-1)
where ® and @ are an erosion and a dilation operation, respectively. An opening operation has
the effect of simplifying complex textures into a simple level of intensity as shown in Figure 5-3
B). From there, a watershed segmentation is applied with results illustrated in Figure 5-3 C).
With a large mask for opening operation, inadequately small segment can be avoided.

Even though segmented, all patches might not be features. Since a patch in each segment
has a different level of intensity from other patches, shadowed leaves could disappear easily. To
filter patches by suitableness, a threshold is applied to the patches. Figure 5-4 illustrates an
intensity patch in a segment. The threshold increases from zero until an area of the binary image
becomes a quarter of the area of the segment. When it reaches this condition, the center point of
the binary image is recorded. This algorithm is also implemented automatically to ignore thinner
segments by computing the ratio of area.

Once a patch over the threshold is selected, compute the center of the patch as shown in
Figure 5-5 A). At this moment, to reflect the actual image, another opening operation is used
again which has smaller mask like Figure 5-5 B). After the threshold is overcome and the
segments are selected, considering all of the patches, Figure 5-5 C) is finally obtained. These
feature points provide the initial position for feature matching. In summary, the entire procedure

is shown in Figure 5-6.
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Results
Fruit Detection

Even though leaf detection is designed to detect the center of leaves, it can also detect the
center of fruit. Figure 5-7 A) and B) shows the result of using a ripe citrus fruits scene and an
unripe citrus fruit scene, respectively. Most fruits are pointed regardless of their color. There is a
problem separating fruits and leaves in terms of fruit detection. However, it would be useful if
fruit candidates were chosen regardless of color because the color-based fruit detection approach
cannot be applicable to green fruit such as limes. Counted number of fruit was shown in
Table 5-1. Mature fruit was detected more than immature fruit.

Size Problem

Since a segment size cannot fit to a leaf size automatically, it is necessary to adjust the size
factor appropriately depending on the image status. Figure 5-8 shows the results of applying
inappropriate size factors. It is not necessary to fit a segment to each leaf. However,
segmentation could vary and features may be unstable.

Conclusions

Outdoor scenes are exposed to unbalanced illumination such as shadow or backlight.
Therefore, it is necessary to apply image filters in order to enhance image quality. An embossing
filter detects and shows features uniformly.

A leaf detection method was devised to provide more stable features than corner detection.
The key point of leaf detection is to segment leaf areas through the combination of
morphological operations. Once segmented, the center of a leaf in each segment is set as a
feature point. Leaf detection was designed to apply discriminating thresholds to each segment to

secure as many features as possible. However, it is not used in every frame. Feature detection is
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carried out only when new features are needed because the detection may not always give the
same points repeatedly.

Future Work

A segment size is a critical factor in leaf detection. Therefore, it is necessary to develop a
method to adjust a segment size automatically. It is expected to find out appropriate factors by

varying the size of segment iteratively.
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Table 5-1. Comparison detected number of fruit.

Figure 5-7 A) Figure 5-7 B)
Number of fruit 15 14
Detected number of fruit 13 8
Detection rate 86.6% 57.14%
, H
i |
02 05 o o B

Figure 5-1. Histogram equalization. A) Original image and its histogram . B) Equalized image
and its histogram.

D

Figure 5-2. Embossing filter effect. A) Detected features with an original image and. B)
Detected features with an embossing filtered image and a mosaicing image based on
the optical flow. C) Mosaicing image based on the features from an original image.
D) Mosaicing image based on the features from an embossing filtered image.
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B = C

Figure 5-3. Leaf segmentation. A) Original Image. B) An opening with large mask applied to
the image. C) A watershed segmentation applied to the image.

segment

intensity
threshold

Figure 5-4. Threshold adjustment.

Figure 5-5. Detect the center of segment. A) Segmented patch. B) Image applied an opening
with small mask. C) Detected feature points.

Image - Sharpness = Opening (Large Mask) - Watershed Segmentation = Selecting segment by threshold >
Opening (Small Mask) = compute Center of segment.

Figure 5-6. Morphological operations of leaf detection.
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CHAPTER 6
FEATURE TRACKING

The objective of this chapter is tracking features between frames.

Introduction

Template images obtained near every feature point are used to compare how the feature
points are moved during tracking features. Tracking is a process to measure the motion vector of
a feature point. Although a great number of methods have been suggested, existing methods that
extract feature points based on specific images have limitations that apply to various types of
images in general. An ambiguous scene or occlusion can cause tracking failure. To keep tracking
robustly, an active mesh method was used in my study. The basic concept of active mesh in
terms of tracking is that the tracking does not depend only on the image, but also focuses on the
geometric relationship among connected feature points. This approach makes it more robust to
track in the case that only the camera is moving. Since features in outdoor scenes are exposed to
a variety of disturbances, they are prone to blink or disappear as shown in Figure 6-1. When they
lose their capacity as a feature, new features must be detected again. Such short-lived features
lead to accumulated errors. Therefore, it is necessary for features to survive as long as possible.

Methods and Procedures

Mesh-based tracking is an extended application of an active contour. An active contour
defines linear relationships between nodes while an active mesh takes care of multiple
connections. Meshes can fit to gradual deformations and are regarded as the surface of an object.
Blinking features which repeatedly appear and disappear can be sustained through developing
these meshes. Molly (2001) proposed a basic idea about an active mesh method and suggested
various potential features to be forces. In my study, part of the equations and features were

employed for force equations.
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Active Mesh

In order to be robust to sudden changes of features, it is necessary to reduce the effects of
individual features. An active mesh considers the movement of overall features by connecting
feature points. To define the relationship with neighboring feature points (nodes), meshes are
generated by Delaunay triangulation. Optical flow is regarded as a force vector in this scenario.

The new position P(x, y) of feature i at frame £, is estimated as follows:
P® =p¥D 18, (6-1)

where S, is the sum of the resultant forces and « is the weight factor.

Si = Zn:Fl(jk) ? (6_2)
=1
,Jeg-r]
: (6-3)
||S||

where F? which is a resultant force of neighboring node ; at frame &, .

F(k) - aF +bF/,1nternul > (6-4)

J.External

where F.

J.External

is affected by image intensity, and F,

J.Internal

is based on the relationship between

nodes. Fixed ratios @ and b are adjusted experimentally (a=0.85, »=0.15) with the sum of
resultant force S, reflected on the center feature P as shown Figure 6-2.
External force

External forces F.

J,External

are defined by the difference of neighboring node P, between

frames k, and k, —1.

F/,External = ﬁ;k)(f;(k) - B'(kil))a (6-5)
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where " is the weight factor of neighboring node , at frame £, . The variable f is the inverse

relationship determining that the farther the node, the less influential it will be on the
calculations. However, for this to be a reasonable assumption, the elevation difference between

the center and neighbor node cannot be too large.

0]
50 Z1_ 4"
J Z": 4o (6-6)
I=1 :
dj‘.") _ Pj(k) _Em" (6-7)

where 4" is distance between current node P and neighboring node }31.("). Tracked features

give us the degree of correlation and the position P* .

Internal force

Internal forces F),,,,, are defined by an elastic coefficient which represents the

relationship between feature points.

F s =7 (B = B, (6-8)

J,Internal J
where 7/](." ) is the elastic coefficient which is a ratio of difference between previous d™ and

current distance dj‘.") to distance a’j(.k).

d(-k_l) —d(-k)
k) _
T (6-9)
J

Internal force not only makes the calculations less sensitive to the high frequency motion,

but sustains the previous force when features disappear temporarily.

Feature management

Features are expected to disappear when the camera moves, some features, go out of the

field of view boundary, while others disappear due to occlusion or are overlapped with other
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features. These features should be deleted immediately so that new feature points can be added to
maintain the total number of points. New features are selected among candidates that are the
farthest from the existing feature points.

Simulation Results

The performance of the active mesh was examined using a virtual object and 2D sinusoidal
camera motion. The testing code was implemented with MATLAB. While the camera moves,
some features are intentionally discarded and overall optical flow is estimated.

When absent features are ignored, the motion estimation appears turbulent. On the other
hand, active mesh tracking follows original motion with sustainable features as shown in Figure
6-4. Each axis indicates 2D motion coordinates in the plot. When an occlusion of over 10%
occurs, the estimation diverges as illustrated in Figure 6-4 B) because too many occlusions
violate the assumption of an active mesh. Figure 6-4 C) shows that an active mesh estimates the
input optical flow better than a normal estimation. This experiment examined only the effect of
occlusion, and does not represent local accuracy.

Multilayered Active Tree

An active mesh method has several disadvantages. Because it searches all nodes
exhaustively, computation speed is slow. Furthermore, wrong estimation can still influence
normal neighboring nodes. To enhance the shortcomings of an active mesh method, a
multilayered active tree method was invented in my study. Multilayered active tree expanding
from a 2D mesh to a 3D hierarchical structure as the active mesh extended from an 1D line to a
2D mesh.

Generation hierarchical structure

Scale invariant methods use coarse-to-fine multiple images referred to as pyramids. The

basic idea of a multilayered active tree is to connect nodes between multiple images. First,
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multiple coarse-to-fine images are prepared by applying Gaussian filtering as shown in
Figure 6-5 A). Feature detection is carried out at each image as shown in Figure 6-5 B). Then a
Voronoi diagram is applied based on features at each layer as shown in Figure 6-6 C). Features
within a segment of an upper layer are grouped and belong to the segment as shown in
Figure 6-7. This procedure is repeatedly conducted for every segment and every layer. Therefore,
this loop can be implemented by a recursive function as show in Figure 6-8.

Features form a hierarchical structure which is automatically generated as shown in Figure
6-9. Since exploring is based on hierarchical paths, it is faster and less influenced by neighboring
nodes than an exhaustive active mesh. Common features between layers are regarded as parent
nodes. Features detected in the coarse image can be regarded as dominant features. Figure 6-10
shows dominant features.

External force and internal force

Once the hierarchical structure is built, the active mesh method is applied at each layer.
Basic formulas are the same as those of an active mesh; however, the exploring path is different.
An active mesh considers neighboring nodes, while a multilayered active tree considers
subnodes. Figure 6-11 shows the difference between an active mesh and a multilayered active
tree in terms of forces. Thick arrows in Figure 6-11 B) denote a large weight factor. Since all
nodes in an active mesh are equally handled, unnecessary evaluations are repeatedly conducted
on the same node. In addition, some nodes that are erroneously estimated can influence other
nodes. On the other hand, because it is possible to assign discriminating weight factors on
dominant or high level nodes in a multilayered active tree, the effect of unstable nodes can be
controlled. Figure 6-12 shows how forces are applied to sub nodes.

In this example, 3" node is a top dominant node. Computation starts from the top node.

Once new top nodes (N3) are determined by an external force, they become a reference (R3) for
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their subnodes. New nub nodes (N,) are determined by both an external force and an internal
force with altering weight factors. In the equation (6-4), weight factors are determined by an
angle between optical flow vectors of upper and lower nodes. The sum of weight factors is equal
to 1. When a noise feature makes the difference, weight factors enable to refer to the internal
forces more than the external force.

Simulation and results

This experiment tests a multilayered active tree’s robustness against to the effect of noise
and occlusions by means of estimating the optical flow. The camera motion model was the same
with the active mesh. Three layers were generated for the hierarchical structure and 19 feature
frames were used. It was assumed that features were consistently detected for the noise
experiment. An image obtained through a Gaussian filter possesses the relatively small number
of features yet the features are prone to be less sensitive to noise. Therefore, smaller noises are
assigned to higher nodes. Noises are added to all frames with random variation. Figure 6-14
shows the result in optical flow estimation. Since noise could influence neighboring nodes in the
active mesh, errors could be accumulated as process goes. However, in the multilayered active
tree, since the lower node’s noise does not affect neighboring nodes or higher nodes, errors were
not accumulated as shown in Figure 6-14 A). Figure 6-14 B) shows that the norm error of a
multilayered active tree was smaller than that of noise-added features.

An occlusion case was simulated by randomly removing some nodes in a certain frame. A
multilayered active tree holds occluded nodes during occlusion frames. Figure 6-15 shows that
occlusion did not affect its optical flow estimation after occlusion occurs. Therefore,
multilayered active tree tracking method can be regarded less sensitive to the sudden change of

optical flow.
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Conclusions

To be unaffected by sudden changes in feature points, an active mesh feature tracking
method was employed. Basically, an active mesh consists of two forces, an external force and an
internal force. The external force refers to feature points with a weight factor, and the internal
force is determined by an elastic coefficient. The ratio between forces is experimentally adjusted.
A simulation for occlusion was conducted with a virtual object and a sinusoidal camera motion.
The effect of occlusion was tested by estimating the overall optical flow with different number of
absent feature points. The results in simulation showed that it is effective with a small amount of
occlusions such as blinking and disappearing features.

However, even though an active mesh is resistant to the sudden changes, it requires
exhaustive computation and it is possible for erroneous features to disturb normal features.
Therefore, a multilayered active tree method was invented, which expands a 2D mesh into a 3D
mesh. The creation of multiple layers is based on coarse-to-fine images by means of Gaussian
filtering. Features extracted from each image recursively form hierarchical structures by
connecting sub-features within an area which is segmented by a Voronoi diagram. Since
multilayered meshes can evaluate the strength of features, it can control the disturbance from
unnecessary features. Subsistence of features was evaluated with the comparison of optical flow.
The optical flow through these methods resulted in resistance to noise. The computation speed of
was faster over ten times than that of an active mesh.

Future Work

The next step is to apply the algorithm to actual sequential images. Since this algorithm
works with several assumptions, it is necessary to verify how appropriate those assumptions are
on the actual sequential images. To compare the accuracy of optical flow estimation, the camera

motion must be known.
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Figure 6-4. Optical flow estimation. A) 30.54% occlusion (5025/16384), B) 18.99% occlusion
(3112/16384), C) 10.53% occlusion (1725/16384).
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Figure 6-5. Nodes generation from multiple images. A) Generated coarse images using Gaussian
filtering. B) Detected corners based on each image.
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Figure 6-6. Voronoi segmentation applied to each image.

Figure 6-7. Grouped features in a segment of an upper layer.
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function [ Nds_r ]= nds_vpts ( vPts_, Iv_, pldx )
if Iv_<2 return; end;
vPt=vPts {lv_};vPt 1=vPts {lv _-1};
for i=1:size(pldx_,2)
Pt =vPt 1.Pt;
polyPt = vPt.vPts{pldx (i)};
pldx = inpolygon(Pt (1,:),Pt (2,:), polyPt _(1,:),polyPt (2,:));
pPt=Pt (;,Idx r);
if isempty(pPt) continue; end;
Idx = find(pldx==1);
Nds_r{i}.Idx = Idx;
Nds r{i}.Pt=pPt;
Nds_r{i}.Nd =nds_vpts ( vPts_, lv_-1, Idx ); % recursive calling
End
Figure 6-8. MATLAB code of recursive grouping function.
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Figure 6-9. Automatically generated hierarchical connection based on an image.
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Figure 6-10. Determined dominant features.
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Figure 6-11. Forces acting on the considering node. A) Active mesh. B) Multilayered active tree.
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Optical Flow Estimation
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Figure 6-15. Simulation for robustness to occlusion. A) Optical flow esitmations. B) Norm
errors between occluded optical flow and compensated optical flow.
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CHAPTER 7
SEQUENTIAL IMAGE MOSAICING

The objective of this chapter is to create a panoramic image with sequential images.

Introduction

A ground-based scouting system which inspects growing states of plants or detects
spreading diseases early can be one vision-based agricultural application associated with
unmanned management. An aerial-based or satellite-based scouting system takes only the top
view of canopies, whereas a ground-based scouting system can take the lateral view of canopies
closer. Therefore, ground-based scouting systems are a more effective way to gather
indispensable information of canopies.

Machine vision systems are also popular devices used in remote sensing. However, since
cameras have limited viewing angles, a huge number of images may be needed to cover a whole
grove. To reduce saving capacities and increase the effectiveness, image mosaicing techniques
are commonly used to stitch images taken from different viewpoints.

Most literature dealing with image mosaicing has assumed a planar scene in which the
shapes of even non-planar objects are not changed. Unchanged shapes make it easy to stitch
images together. This assumption can be achieved only when a camera is purely panning or is far
enough away from objects as a satellite. Otherwise the mosaicing is prone to failure because
some features can be occluded or deformed, which is called a parallax problem. In two images
taken from different positions as shown in Figure 7-1, for instance, the right side of an image at
the left position and the left side of the other image at the right position of a camera could be
different. Maintaining shapes in the scene is important to find out correspondences. Since the
deformation of a feature point occurs less between video frames, losing the correspondences can

be minimized by tracking the feature points.
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Methods and Procedures

A mosaicing procedure is briefly divided into six stages: Image Acquisition, Feature
Detection, Feature Matching, Estimation Homography, Warping and Blending. The basic
process of mosaicing is to determine and align correspondences between two given images.
Therefore, those two images should have enough area that overlaps. Once correspondences are
determined, the extrinsic parameters of a camera can be also estimated. Then warping and
aligning target images are achieved based on a homography between the images. Figure 7-2
shows a typical image mosaicing procedure. The structure of the algorithm consists of four
essential functions: Initialization, Filtering, Tracking and mosaicing. Figure 7-3 shows a flow
chart of the algorithm.

Projection Model

Most image mosaicing methods conform to either spherical or cylindrical projection
models. Both projection models have a single center position of a camera. The image mosaicing
using these models is carried out by the pure rotation of a camera. Since there is no translational
motion, a homography becomes simply a rotation matrix.

H:R+§TNT9H:R,(T:O). (7-1)

In the pure rotational motion, no parallax occurs with a non-planar scene. Therefore, warping
and matching are conducted simply. However, these projection models are limited because they
cannot be applied any longer if a camera moves far enough away.

In a ground-based scouting system, the center of a camera moves along a grove alleyway.
Assuming that cameras are placed on the rear wheel axis of the vehicle and the path of cameras

is almost a straight line, only variations in the X and Y axis can be considered without
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perspective warping computations. Since there are small variations in the z axis between
successive frames, the optical flow indicates camera motions directly.

Alignment

An alignment is a process to register images with a distance along the motion vector
between successive images. An alignment approach in my work was designed to remove the
partially overlapped area of an image in order to register it along an edge perpendicular to a line
which connects the center of two images. Since a parallax may cause incongruity while
mosaicing, this cropping edge approach tries to minimize the parallax by leaving a partial image
around the center. This approach assumes that a parallax increases as a camera moves farther
away from the center of an image plane as shown in Figure 7-5 A). This assumption can be
applied only when the camera direction is orthogonal to lengthy objects. Therefore, the
alignment can be approximated by cropping into a part of the image. Figures 7-5 B) and C) show
the process that determines the edge cropped overlapped area. Only case A) was used within my
work.

To remove the overlapped area along the cropped edge, an alpha channel was used. An
alpha channel is a gray mask image which controls transparency between a given image and
background. First, you look for intersecting points between frame edges and a line perpendicular
to another line between the centers of frames. Once the cropping edge is determined, it should be
decided which side would be removed. The partial area to be removed should be located between
the centers. Then, you can make boundaries based on these edges and apply a floodfill function
to the area on the alpha channel. By controlling the alpha channel, the overlapped area can be
blended smoothly. Regardless of which direction the camera moves, the partial area between

centers would be removed.

83

www.manaraa.com



Filename Numbering

If the registered image gets too big, it may be a problem to process. Thus big images
should be cut with a fixed size whenever it surpasses twice the regular size. Precisely cropped
images can be joined together whenever we want without any additional computation later. The
file names are named with an index number similar to a matrix. Figure 7-6 A) shows an example
of the numbering of divided mosaic images.

Experiment
Configuration

To be compatible with coordinates of VRML later, a negative focal length was employed
like that of OpenGL. Configuration is also shown in Figure 7-7 B). A vehicle to which a camera
is mounted on the real axis moves along the alleyway in a grove. Figure 7-7 A) shows a situation
when camera moves in a sinusoidal path. The variation along the Y axis is due to vibrations of a
vehicle while moving. Parameters assumed for simulation are shown in Table 1.

Simulation

Before applying the algorithm to an actual grove scene, the estimated camera path was
compared with a known input sinusoidal path as shown in Figure 7-8. The current coordinates
are based on the previous frame image. Since the image coordinates are discrete integers,
round-off errors accumulate with respect to the camera path as the process continues. Cumulative
errors can be corrected by using other positional sensors such as a DGPS receiver.

This algorithm was examined with prerecorded video clips, rather than real-time video
input. To observe the performance of this algorithm, it was compared with a panorama demo
program built in video-processing toolbox of MATLAB. This video clip was taken from a
camera moving horizontally rightward. To make it easy to track feature points, salient points

were scattered artificially and a tetrahedron was adhered in order to form a non-planar object.
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Since the panorama demo program leaves behind the left part of the image, Figure 7-9 A) shows
that the resulting image is skewed favoring the right side of the object, whereas the developed
algorithm leaves a direct frontal view as shown in Figure 7-9 B). Figure 7-10 shows the result
when the position A) and direction B) of the camera moves with a sinusoid pattern. Notice how
images have been cropped and stitched.

Results

Real grove scene video clips used in this experiment were recorded in the UF grove on
May 23rd 2007. A camera was fixed on a tripod and a cart that feigns a vehicle, and pulled by
hands with a speed of less than 1mile/h. Mosaicing results for the grove scene are shown in
Figure 7-11 through Figure 7-13.

First, video clips were recorded far enough away from the citrus grove. In this case, the
vibration of the vehicle had little effect. Since this scene can be regarded as a planar object, the
mosaicing is conducted quite well. Figure 7-12 shows a mosaicing result which was recorded
closer to the grove so that leaves can be observed in detail. This result looks blurred because of
winds. It is very difficult to solve this problem without information about the global location of
the vehicle. In my work, the wind-waving problem was not considered.

Another problem found was a gradual deviation. The mosaicing image is very lengthy. If
the horizontal axis of an image and the direction of a camera motion are not parallel, the
mosaicing image will be out of the upper or lower boundary before long as shown in
Figure 7-13. Therefore, the angle of camera should be aligned horizontally before recording. It
was designed for large size images to be automatically divided into fixed sizes when the width

exceeded the twice width of the fixed size as shown in Figure 7-13.
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Conclusion

In my work, video image mosaicing for a non-planar object was studied. The developed
algorithm estimates the motion vector of the camera. When a camera moves parallel to objects,
cropping edge approach can approximate mosaicing of even non-planar objects such as a citrus
grove. This video mosaicing was achieved in spite of moving irregularly. This result shows that
the cropping edge approach can be appropriate to mosaicing.

Any well-designed image processing algorithm does not always yield successful results in
every case. Since the algorithm developed in my work assumes that successive images are
similar, that is optical flow can be measured, it makes an unexpected error when excessive
changes of view occur. A few errors can affect the success of the entire mosaicing. Therefore, it
is most important to track feature points robustly and capture video stably. The successful result
of image mosaicing depends on how accurately feature points are tracked. Since the image
coordinates are discrete integers, the estimation errors in terms of camera path may be
accumulated as the process goes.

A noticeable problem from the results is a deviation from the horizontal image axis.
Figure 7-3 shows that the camera motion and the horizontal axis of an image are not parallelized.
Since the mosaicked image is very lengthy, it may not be within the margins of the upper or
lower boundaries after long unless the horizontal axis of the image and the direction of the

camera motion are substantially parallel or corrected using some appropriated sensors.
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Table 7-1. Intrinsic parameters for simulation.
Video image Mosaic image Focal length Metric Conversion Number of frame
320x240 640x480 -460 300 dpi 64

Overlapped
— Zp X7 Scene

Figure 7-1. Parallax problem occurring with non-planar objects which have depth.

camera

Feature Detection, Homography,
Camera Image sequence Feature matching Warping
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Regulation Blending Registration

Figure 7-2. Basic steps of image mosaicing.
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Figure 7-5. Alignment. A) Planar assumption. Registration with B) plane image and C)
projective warped image.
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Figure 7-7. Configuation of image mosaicing simulation. A) Virtual non-planar model. B)
Coordinates of camera.
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Figure 7-8. Evaluation of positioning error or camera.

Figure 7-9. Cropping edge mosaicing effect. Comparison between mosaicing results from A)
MATLAB and B) developed algorithm.

Figure 7-10. Mosaicing with sinusoid motion. A) Translational sinusoid motion and B)
Rotational sinusoid motion.
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Figure 7-11. Mosaicing result from video clip recorded far enougaweiy from citrus grové.
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Figure 7-13. Mosaicing result from 10 times zoomed in video clip.
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CHAPTER 8
VISION BASED 3D RECONSTRUCTION

The objective of this chapter is to reconstruct the surface of a citrus canopy so that the
robot harvesting system can map and navigate fruit positions later.

Introduction

A 3D reconstruction of the canopy can be not only used to measure the volume of the
canopy, but also to visualize the canopy in virtual space. To reconstruct the surface of the
canopy, various sensors could be used. Vision systems are representative devices used for
detecting the features of an object. Features extracted from the canopy become vertices of the
surface of the canopy. The depth of a vertex is determined based on two-view geometry.

To reconstruct a structure, two sets of matching points and camera motion are needed,
where matching points are projections of the actual 3D surface. When both the 3D position and
2D projection are given, camera motion can be estimated. The inputs of all steps require the
others’ outputs. Therefore, it forms a circular loop. Figure 8-1 shows this relationship and
parameters among projection, motion estimation, and reconstruction. This loop is prone to
diverge due to the accumulation of errors unless ground-truth is given.

An 8 point algorithm based on two-view geometry is widely used in reconstruction. The
solution of two-view geometry is determined by Singular Value Decomposition (SVD) or
inverse matrix operation, as introduced in Chapter 2. Since correspondences are coupled in the 8
point algorithm, errors that occur at some of the correspondences influence the existing
reconstruction. Additionally, re-projection errors continue to increase.

Since the robot manipulator used in my study provides reliable motion of the end-effector,
a Pliicker coordinates system was applied to the 3D reconstruction. This approach calculates

correspondences individually with a given camera motion. A pair of over 8 points is not required,
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and local errors do not affect the existing reconstruction anymore. Because the Pliicker
coordinates system mainly uses the dot product and the cross product, its expressions about 3D
computation is considerably simpler than ordinary triangular equations. It does not require any
complicated matrix operations including SVD or inverse matrix. In addition, computation costs
can be less expensive in certain computing systems which are specified for the matrix operations.

Methods and Procedures

This section shows how to manage the quality of interest points and discusses known
problems with an 8 point algorithm. The alternative approach using a Pliicker coordinates system
is proposed as a counterproposal to the reconstruction. Simulation and indoor experiment are
carried out to confirm results through re-projection error.

3D Reconstruction using an 8 Point Algorithm

The basic procedure of an 8 point algorithm is to estimate a relative camera motion, and
then reconstruct the vertices based on the estimated camera motion. Since the estimated camera
motion is relative, the origin coordinates must always be given. Therefore, base vertices are
considered for the initial origin coordinates.

Markerless approach

The base vertex is a known basis, called ‘marker’, to estimate the origin coordinates.
‘Markerless’ means that 3D reconstruction is carried out without known markers. Since the
harvesting robot motion model assumes that the frames get out of the initial frame, it loses the
origin coordinates eventually. One possible way to achieve markerless, reconstruction is to

continue adapting stable vertices as base vertices from reconstructed vertices.
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Initial base vertex model

Since an icosahedron has many vertices which are not placed on a plane, and it is easy to
make precisely, icosahedron base vertex models like Figure 8-2 were made to provide the initial
known base vertex and compare the accuracy of reconstruction.

Interest point manager

The aim of interest point manager is to judge and manage the quality of Interest points.
Two-view geometry assumes that given sets of correspondences are exact projections of identical
vertices. In practice, input sets of correspondences are contaminated by a variety of noises or
outliers. During the processes, even one outlier can cause the failure of the whole reconstruction
eventually in an 8 point algorithm. Therefore, it is required that the interest point manager is
capable of measuring and managing the quality of interest point quite strictly. Figure 8-3 shows a
flow chart of the interest point manager. Since a list of interest points on each frame does not
have an index, an additional index list is assigned where it adds and deletes elements of the list

when events happen. There are three sets of lists for interest points.

o Interest point set (CF*) is used to track and reconstruct correspondences.
o Base point set (BM*) is used to estimate the camera motion.
o Candidate set (BE*) is used to judge which interest point is good or bad to be a base vertex.

When a camera moves, four events occur— interest point selection, interest point removal, base
vertex selection and base vertex removal.

Interest point selection: The rule of adding a new interest point is to choose new interest
points in empty area farthest from existing Interest points as show in Figure 8-4. This rule allows
interest points to survive longer while the scene moves, as well as to avoid concentrating on one
spot. The steps are as follows.

1.  Extract an adequate number of candidate interest points.

2. Compute norm of difference between each new point and existing points.
3. Sort the list of norm.
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4.  Take as many new points as needed, which have the largest norm in the rest of the list.
Figure 8-4 A) illustrates a case that a camera moves leftward. The leftmost interest points will be
picked up first, then the next middle points will be repeatedly picked up.

Interest point removal: As the camera moves, interest points are also supposed to change.
When some of interest points are overlapped or go outside of frame edges, they must be removed
in the index list. Since interest points not picked up as a base point have no information to track
anymore, they should be discarded as soon as they disappear.

Once the Lucas-Kanade tracking function in OpenCV library, for example loses some of
interest points, it places them into the nearest corners rather than discards them. This behavior is
quite unnecessary for 3D reconstruction. This phenomenon always occurs around the frame
edges. One solution is to force to discard them before they reach the frame edges. The optical
flow’s direction determines which edge is chosen, and its maximum speed establishes how thick
the area will be. Eight pixels were selected for the edge thickness in this experiment.

Occasionally, some of the interest points are not placed on corners. In this case, they are
prone to fluctuate around their initial position. Those altering movements lead to the wrong
reconstruction. One of the solutions to these unstable interest points is to measure the difference
between the input position and the re-projected position with respect to reconstructed vertices,
which is called re-projection error. Figure 8-6 shows that some difference between input position
(=) and re-projected position (x) occurs when an interest point is placed on a non-corner. When a
re-projection error of an interest point exceeds a threshold, it is discarded. Through repeated
experiments, the threshold was set at 0.015 [in].

Base vertex selection and removal: Reconstructed vertices which have small

re-projection errors or converge stably are picked up as new base vertices. When stable interest
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points between frames converge into constant positions, the reconstructed vertices corresponding
to them become candidates for the base vertices. A base frame provides the second view to
compute reconstruction. When base vertices are chosen, the base frame is also captured and is
held until the next selection event.

To estimate convergence, differentiation and standard deviation of re-projection error is
observed between frames. If the reconstruction is adequate, differentiation and standard
deviation of re-projection error will be almost zero. Figure 8-7 shows examples of a stable vertex
and an unstable vertex. Unstable Interest points are prone to continue fluctuating as shown
Figure 8-7 B). In a way, it is necessary to limit the number of samples to compute statistic
quantity, thus minimizing the effect by momentarily wrong measurement. Figure 8-8 shows the
statistical quantity of each vertex by using different sizes of circles. Large statistical quantity
means instability, as a perfect measurement leads it to zero. The minimum error in this
experiment was 0.01 [in]. The threshold for base vertices was set 0.02 [in] as shown in
Figure 8-8 B).

Implementation

A real-time 8 point algorithm was implemented with OpenCV and C++Builder.
C++Builder takes charge of the display and user interface, and OpenCV carries out image
processing and connectivity to a camera. The implemented software was also designed to process
video clips as well as real-time camera input. The farther the camera motion from the base
position, the more accurately an estimation is calculated. Figure 8-9 shows successful
reconstruction while base points show up on both the left base frame and the right current frame.

However, the base points used for motion estimation must continually be provided so that
the camera keeps moving. Even though the re-projection error is small, accumulated errors

eventually contribute to the failure of reconstruction. Figure 8-10 shows that the re-projection
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error continues to increase, as the number of base vertices increases. The X-axis and Y-axis
denote the number of frames and pixels, respectively. This effect is because it loses the global
ground truth to maintain the origin coordinates as the scene moves away from the first initial
view.

Sensitivity to round-off error

3D reconstruction through an 8 point algorithm is considerably more accurate with floating
type interest points, and re-projection errors are virtually zero. In terms of pixel units of a real
CCD image sensor, round-off error could occur because of integer type interest points. To
examine the sensitivity of an 8 point algorithm, noises within 4 pixels, 0.0124 [in] (0.315 mm)
on CCD were added purposely as shown in Figure 8-11 A). 4 pixels is not a big error for
fluctuated interest points in the image, and is not noticeable as shown in Figure 8-11 A).
Nevertheless, Figure 8-11 B) shows that the reconstruction deviates with big differences between
the original and reconstructed vertices. The norm error of reconstruction was 6.3264 [in] when
cameras were placed at 15 [in] away from the object in this test.

The effect of round-off error in an 8 point algorithm was simulated for two different types
of vision systems as shown in Figure 8-13. The dashed red lines are reconstructed vertices.
Figure 8-12 A) and C) show that the reconstruction was perfectly achieved in both systems when
floating type interest points are used. However, in the case of integer type interest points, the
reconstruction was unacceptable in both systems. Since stereo vision could secure many more
correspondences, the reconstruction errors were relatively smaller as shown in Figure 8-12 D).

Discord index

Since interest points are just a collection gathered, indices are assigned to manage (add /
delete) interest points, as well as to provide correspondent information. Even though there is

nothing wrong with the index manager, mismatching error happens on occasion while running
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the software. Figure 8-13 shows a mismatching case of interest points between frames. The black
solid lines represent appropriate matching, and the green dotted lines represent mismatching.
Since this reconstruction software assumes that correspondences are always correct, and the
program is not designed to examine the adequacy of matching again, the whole reconstruction is
prone to collapse, once mismatching happens.

3D Reconstruction using a Pliicker Coordinates System

An 8 point algorithm is widely referred to as a 3D reconstruction. Because
correspondences are coupled in an 8 point algorithm, even a few outliers can influence the whole
reconstruction. In addition, accumulated errors keep increasing. Therefore, many methods such
as RANSAC, bundle adjustment and Marque-Levenberg are employed to discard outliers.
However, according to the circular relationship shown in Figure 8-1, no method without ground
truth is likely to resolve the accumulation of error.

The robot manipulator used in my study provides measurable and repeatable motion of the
end-effector. If the motion information is given as a ground-truth, a Pliicker coordinates systems
can be simply applied to a 3D reconstruction instead of an 8 point algorithm. This approach is
intuitive and independently computes correspondences with given camera motions. Computation
is conducted about a single correspondence; therefore, it is not necessary to take a set of over
8 points. Furthermore, since any individual error does not influence the existing reconstruction
any longer, it is not necessary to check outliers during reconstruction. This approach starts with
defining a line in a space (source: Crane III, 2006, screw theory lecture note).

A line in Plicker coordinates is defined as follows.

L=1{S;S, |, (8-1)
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where S is a normalized vector between two points, and S, is a moment with respect to an
origin as shown in Figure 8-14 A). S and S, are determined by given points P and T.

P-T
S=——,§,, =Px8S, -
o (8-2)

c

where T = [xc y, z ]T is the center of the camera, and P = [xw Y, ZW]T is the

correspondent point on the image plane with respect to world coordinates. The P is determined
by the extrinsic camera parameters. Figure 8-14 B) represents

P=Rp+T, (8-3)
where R is the orientation of the camera which has a 3x3 rotation matrix, p = [xim Vin ]T isa
correspondent point with respect to image coordinates. Assuming the correspondent points P,
and P, are projections of a vertex Q of an object, the lines L, and L, are on the same plane as
shown in Figure 8-15 A). In other words, two non-parallel lines on the plane must intersect at Q .

Given the two lines L, and L,, the intersection point Q can be determined by using the

following equation.

Q: Slz"SOLZ Sl + Slz"Sou SZ’ (8-4)
sin & sin @

where @ is an angle between lines, S,, denotes normalized cross product between S, and S, .

S, xS,

@=cos'(S,-S,), S, =——2.
(S,-S,), Sy, S, xS,

(8-5)

Iflines L, and L, are not on the same plane, there can still exist another line L, orthogonal to

both L, and L, as shown in Figure 8-15 B).
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Given the non-coplanar lines L, and L,, the intersection point Q, and Q, can be

determined by using the following equation.

S, xS, , —d(S,, xS
()1 — 12 ( 0L2 ( 12 2))’ ()2 :(21 +d812, (8-6)
S12 'SOLI

where d is the distance between Q, and Q, .

Sz 'S0L1 +Sl 'SOLz
sin @

d=- (8-7)

Due to interference, interest points on the image may not be an accurate enough projection.

Therefore, the two lines are unlikely to be on the same plane in reality. In this case, Q can be
approximated by taking the average between Q, and Q, . (Refer to Appendix A to see more

inducing procedures.)

_Q,+Q,

Q="

(8-8)

To validate the equations, a reconstruction simulation using a Pliicker coordinates system
was conducted with a virtual tetrahedron model as shown Figure 8-16. The red crosses are input
correspondences and the cyan dots are re-projections. The re-projection errors were almost zero
in this simulation. Therefore, the idea that the equations work precisely was confirmed.

Experiment
Configuration

Figure 8-17 shows that a camera is attached on the end-effector of a robot manipulator. A
camera does not need to be in the center of the end-effector. The robot manipulator used is
Robotics Research 1207 which has 7 DOF, and provides the position and orientation of the end-

effector.
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Robot motion generation

Since the inverse kinematics formula of the robot manipulator used in this experiment was
unknown, the robot was moved manually to create particular motions. To save resources, the
motion simulation software was implemented as shown in Figure 8-18 A). This software allows
humans to jog the virtual robot manipulator in virtual space with respect to global coordinates.
Once base motions are determined, intermediate motions are generated by fitting methods such
as Spline. Figure 8-18 B) shows each joint angle was generated automatically.

Robot motion control and capture image

To make it easy to capture images, fully automated and integrated robot control software
was implemented as shown in Figure 8-19 A). This software was implemented to load and
display motion data, send commands to the robot manipulator and capture and save images from
a camera. Since it is unlikely to take clear shots due to the vibrations caused by inertia, it was
designed to stop at each position for 3 seconds. Distance between motions was set within 10 [in]
to secure a sufficiently overlapped area between sequential images. Figure 8-19 B) shows the
captured images along the path of motion.

Calibrations for Camera Parameters

Every real camera has its own intrinsic parameters such as lens distortion, focal length,
principal point, scaling factors and skew angels. One of cameras used in my study has a very
small lens. The smaller focal length a camera has, the more lens distortion occurs. Since
two-view geometry assumes an ideal flat image plane, it is necessary to compensate for lens
distortion effect.

Rectification for lens distortion effect

Two types of lens distortion are typically considered. A tangential distortion represents the

degree of skewing between axes. A radial distortion illustrates either barrel or pincushion effect.
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For objects close to a camera, a barrel distortion occurs. These distortions can be compensated
for with the following equations, which are introduced by Camera Calibration Toolbox for
MATLAB of Caltech Vision lab (2008).

Tangential distortion (skew effect):

Ao = {(r 2xy (r2 +2x? )}[l@] _ {2k3xy +k, (,»2 +2x° )} 5

2 +2y2) 2xy k, k3(r2 +2y2)+k42xy

Radial distortion (barrel or pincushion effect):

*r ta Xa 2 4 A IR
v, |=KK| x, |, where | " | = (14 + ket + k] " |+ dgonia» (8-10)
1 1 Ya 4

where 7> = x*> + y*. Coefficient & ’s are determined through the camera calibration. Since these

equations are reversible, it is possible to generate virtual correspondences for simulation.
Figure 8-20 B) shows the undistorted image through camera calibration. The intrinsic parameters
are shown in Table 8-1 and the coefficient & determined through the calibration was
k=[-0.6717 0.8389 —0.0047 0.0148 0].
Accuracy of camera motion estimation

Figure 8-21 A) shows the extrinsic camera parameters estimated by camera calibration.
The re-projection errors were within 2 pixels. That means the estimated camera motions were
acceptably accurate. When these camera motions were transformed into the motion information
from the robot manipulator, the target checkerboard is supposed to coincide if the camera
motions are accurate. However, the target checkerboard did not coincide as shown in Figure 8-21
B). Therefore, it is regarded that the motion information from the robot manipulator has some

errors. The maximum difference between samples was about 3 [in].
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Feature Matching

For matching correspondences, the performance of SIFT and SURF feature matching
methods were examined with several pairs of indoor scenes. Figure 8-22 shows matching results
from several pairs of images which are taken with about 2 [in] distance. The dashed lines
indicate optical flow vector. The similar optical flow vectors are prone to denote similar depth of
vertices. Figure 8-22 A) shows several mismatched correspondences whose vectors are twisted.
Optical flow vectors that differ greatly from the dominant optical flow vector are excluded. This
rule was applied to discard mismatched correspondences. Figure 8-22 B) shows most of the
outliers were discarded. Through the test, it is regarded that SURF shows adequate matching
performance and high speed relatively more than SIFT. Average computation time for a pair was
3 times faster than SIFT.

Indoor Experiments

The 3D reconstruction algorithm was examined on an indoor scene before applying it to an
actual canopy. Since it is difficult and inaccurate to measure the size of an actual canopy, it is
necessary to confirm the algorithm with known sizes of objects. To confirm the performance of
the algorithm, the reconstruction of two icosahedrons was conducted at the two pairs of
correspondences as shown in Figure 8-23 A). Two sets of interest points were selected manually.
The difference between input correspondences and re-projected points are adequately the same
as shown in Figure 8-23 B), which means reconstruction is locally correct. However, since the
motion information from the robot manipulator is not quite accurate, reconstructed icosahedrons
at each motion did not coincide globally as shown in Figure 8-23 C). This discordant result
represents errors between two different matching sets. This offset can be compensated by

calibrations between motion information and physical position.
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Figure 8-24 shows a result in reconstruction of another object, using the same procedure.
Interest points were selected manually (by hand) and automatically (by SURF), and both results
were plotted in Figure 8-24 B). Even though there are inevitable errors during automatic
selection, the entire reconstruction maintained a considerable deal of approximation.

To confirm the effect of input errors, the result of the Pliicker coordinates system was
compared with that of the 8 point algorithm. Figure 8-26 A) is the same plot with Figure §8-24 C).
The reconstruction by an 8 point algorithm shown in Figure 8-25 B) looks impractical. Therefore,
it is regarded that a Pliicker coordinates system using a single point to compute, yields better
performance than an 8 point algorithm using a set of coupled points for 3D reconstruction.

Outdoor Experiment

The algorithm was eventually examined with an actual canopy in Ocala, Florida. The
experiment was carried out at Pine Acre grove in Florida. Figure 8-26 A) shows the operation on
an actual canopy. Since canopies are much bigger than the workspace of the robot manipulator in
general, the reconstructed surface of a canopy is just part of it. Figure 8-27 shows 75 sequence
images sampled with a zigzag camera motion shown in Figure 8-26 B).

Results

Since the image quality was comparatively low and the overlapping area was not wide
enough, many of the interest points were discarded unlike the indoor experiment. In addition,
interest points were not distributed uniformly, and only a few correspondences were obtained at
each pair of images. Figure 8-28 shows one of matching results. There were still about 10% of
mismatching correspondences; however, those mismatching correspondences are unlikely to
influence the final reconstruction. Feature tracking could contribute to holding an unbiased

distribution of interest points, even though it is not in bad condition.

104

www.manaraa.com



Figure 8-29 A) shows the final reconstruction of the canopy based on empirical
measurement. This part of canopy surface shown in Figure 8-29 B) was approximated using 2D
grid interpolation. The 2D grid interpolation can not only reduce the entire number of vertices,
but also regulate biased vertices. In addition, .it can compensate wrong vertices too. If adequately
many vertices were reconstructed, estimated vertices the surface could look more realistic.
Figure 8-29 B) shows reconstructed vertices and camera motions. Since fruit detection was not
applied to my study, some of the fruit positions were manually picked up, so that we can confirm
the reconstruction was appropriately carried out. The circles in Figure 8-29 B) indicate fruit
positions selected manually. The red dots in Figure 8-30 A) indicate re-projection from
reconstruction. The re-projection errors between input fruit positions and re-projections were
adequately small. Therefore, as we have seen in the indoor experiment, it is regarded that the
surface reconstruction of a real canopy is conducted well. The reconstructed surface can be used
for visualization and measurement of the volume.

Conclusion

In my study, 3D reconstruction of the citrus canopy was studied. An 8 point algorithm is
an adequate approach for the reconstruction of objects which are entirely covered in the frame of
view. However, it is hypersensitive to minor errors due to coupled input points. Furthermore,
when objects are larger than the view frame like the canopy case, reconstruction errors are likely
to accumulate. To match correspondences between sequential images, the SURF matching
method was employed. A Pliicker coordinates approach to reconstruct the 3D surface of canopy
worked out adequately. The Pliicker coordinates system’s expression for reconstruction is
intuitive and computed individually. Therefore, any individual error does not destroy the existing

reconstruction. Since the camera motion obtained from the robot manipulator could be
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inconsistent with the physical pose, it is necessary to take as many samples as possible. The
successful result of reconstruction depends on how accurately feature points can be matched.

Future Work

Since the objective of my study was the reconstruction of the canopy, some of the
automation processes were not implemented in my study. In future work, fruit detection will be
included. Once fruit position was mapped on the surface of the canopy, the actual fruit position

will be proved by positioning the end-effector of the robot manipulator to the mapped position

from the reconstruction.
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Table 8-1. Calibrated Intrinsic camera parameters.

Coordinates ~ Image Resolution Forcal Length Image Center a
X-axis 640 747.01 276.89 0
y-axis 480 742.74 240.18 0

Reconstruction

Position
Orientation

2D Correspondences I

Figure 8-1. Loop among projection, motion estimation and reconstruction.

Projection

Figure 8-2. Icosahedron base vertex model.
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Figure 8-3. Flow chart of an 8 point algorithm.
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Figure 8-4. Interest point selection. Basis to pick select new Interest points at A) previous frame
and B) next frame.

108

www.manharaa.com




o ° T
o
4 i
T
coe Tk

Figure 8-5. Interest points around edge are discarded.
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Figure 8-6. Re-projection error of unstable Interest points.

A B
Figure 8-7. Stability of vertex. A) Converging stable vertex. B) Fluctuating unstable vertex.
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Figure 8-10. Increment of accumulated re-projection error.
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C

Figure 8-12. Reconstruction simulation. Simulation with A) floating type pixels in single vision,
B) integer type pixels in single vision, C) floating type pixel in stereo vision and D)
integer type pixels in stereo vision.
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Figure 8-14. Pliicker coordinates system. A) A line definition. B) Intersection between a line and
a plan.

Figure 8-15. Determination of an object vertex. A) Two coplanar lines. B) Common line
orthogonal with two lines.
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Figure 8-18. Robot motion simulation. A) Base robot motion. B) Joint angle generation based on
the base motion.
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Figure 8-20. Camera calibration. A) Original image. B) Undistorted image.
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Figure 8-21. Detemination of camera motion. A) Camera motions estimated by camera
calibration. B) Transformed camera motion based on motion information from robot
manipulator.

Figure 8-22. Feature matching. A) Matching by SIFT. B) Matching by SURF.
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Figure 8-23. Reconstruction of icosahedrons. A) Icosahedron objects. B) Difference between
input points and re-projected point. C) Reconstructed icosahedrons.
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, ’ Figure 8-24. Reconstruction of a robot manipulator. A) Interest points picked up manually. B)
| Viewpoint of the object. C) Viewpoint of the object. D) Reconstructed result.

.
W e soee” e

Figure 8-25. Reconstruction comparison. Reconstruction by A) a Pliicker coordinates and B) an
8 point algorithm.
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Figure 8-26. Outdoor experiment. A) Scanning using robot manipulator with B) zigzag camera
motions.

Figure 8-28. Matched correspondences between sequence images.
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Figure 8-29. Reconstruction results. A) Approximated surface of citrus canopy. B)
Reconstructed vertices.
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Figure 8-30. Reconstruction confirmation. A) Fruit positioning. B) Re-projection error.
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CHAPTER 9
RANGE SENSOR BASED 3D RECONSTRUCTION

The objective of this chapter is to globally reconstruct canopies by combining an active
range sensor (Laser Detection And Ranging, LADAR) and a Global Positioning System (GPS)
receiver.

Introduction

In precision agriculture, to treat fields specifically, it is important to observe the variability.
Remote-sensing is one monitoring method used for wide areas. There are a couple of approaches
in remote-sensing. As compared with aerial or satellite-based remote-sensing systems,
ground-based remote-sensing systems give more effective benefits such as detailed vision-based
information about distributions of status like diseases or vigor observed closer at hand. However,
this chapter discusses a technique that approximately measures the volume of canopies. A range
sensor (LADAR) and a GPS receiver is used for measurement, and estimated data can be
mapped on a global map of the geographic information system (GIS).

Methods and Procedures

Before conducting experiments, simulation software was developed. The simulation step is
not only necessary to verify the algorithm, but helpful to analyze errors with actual field data.
The entire procedure is shown in Figure 9-1.

Coordinates of LADAR and Vehicle
Scanning model of LADAR

A LADAR is an active range sensor which measures distances to objects by emitting laser
beam pulses and scanning for reflected pulses in a counter-clockwise planar semicircle (180°) as
shown in Figure 9-2 A) and B). Therefore, scanned data do not indicate 3D space information

without manipulation. Furthermore, if the position or orientation of a laser source is consistently
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altering dynamically, it makes estimation more difficult. A GPS receiver can provide only
position information of a LADAR. To determine the orientation of a LADAR, it is assumed that
both the position and the orientation of a LADAR are fixed on the rear axle of a vehicle, and it
scans in the lateral direction with respect to the forward direction of a vehicle. Since the Y axis
of a LADAR can be regarded as the normal vector of the path curve as shown in Figure 9-2 C),
the orientation can be determined based on the path obtained from a GPS receiver.

Motion model of vehicle

Since a LADAR is capable of scanning the canopy on both sides of a vehicle, the vehicle
moves along every two rows in spiral as shown in Figure 9-3. Since the speed of a vehicle is not
very fast, the resolution of position information taken from a GPS receiver unit is too
underpopulated compared with a LADAR. Therefore, the intermediate motions of a LADAR are
interpolated by a spline curve fitting method with the assumption the position information
received from a GPS receiver is accurate.

Simulation

On the assumption that measured data are ideally accurate, a simulation for range
sensor-based reconstruction was conducted. This simulation has several steps. A path generation
and distance measurement simulate GPS and LADAR information, respectively. A 3D
reconstruction is achieved based on these data.

Virtual canopy model

For simulation, a virtual canopy was modeled using a mixed Gaussian. The mesh of the
model was generated by Delaunay triangulation. Virtual canopies having different height are
uniformly aligned in a grid. The pitch size between canopies is 4 [m]. The created virtual canopy

model is illustrated in Figure 9-4.
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LADAR simulation

A virtual canopy model consists of a number of triangular facets. When a laser beam
passes through a facet, the distance between the beam source and intersecting point on the facet

can be measured. According to Pliicker coordinates system (see Appendix A), an intersection

point p that a line {S] ; Sou} passes through a plane {S2 ; dz} is determined by

(Sz X Sou)_dzsl
S,-S, '

9-1)

Therefore the distance between the laser beam source and facet is |p| . The intersecting point can

also be placed on the outside of a given facet as shown in Figure 9-5. To discard these invalid
points, the summation among these three angles between the intersecting point and three vertices

of a facet is computed. When the intersecting point is located inside the facet, the summation of

angles is equal to 360°. An angle between two lines {S1 ;0 S, u}‘ and {82 ;0 S, Lz} is solved
by
0 =cos™ (ﬁ] : (9-2)
|Sl| ) |S2|

There could be several facets which a laser beam passes through. The closest facet from
the laser source is regarded as an actual reflecting one. Since it is time-consuming to compute all
of the triangles every time, facet which are placed within 25° upper and lower bounds with
respect to scanning plane are selected as candidates to check in order to reduce the number of
checking facets during iteration.

Motion simulation

Since a laser beam source is a moving part, its coordinates must be transformed. To set this

configuration, the YXZ rotation transformation is used.
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R=RRR, (9-3)

1 0 0 cosff 0 —sinf cosy siny 0
where R, =|0 cosa sina |, R =| 0 1 0 |,R, =|-siny cosy O].
0 —-sinf cosa sinff 0 cospf 0 0 1

The direction of the beam P, , at each position is determined by the following transformation.

P

Path

=RTP, .z, (9-4)

where T is a translation vector and P, . is a laser beam vector. Figure 9-6 shows the

coordinates at a scanning.

A real LADAR considered has 180° scanning angle, with 180 individual laser beams
emitting from the source distributed evenly over the 180°. The LADAR has the capability of 5
scans within a second, however, this frequency is too high to reasonably calculate. A more
manageable resolution and frequency for computation in this simulation was set to have a
scanning angle of 60° and frequency of 12 scans in 0.5 [s].

To simplify the calculation in this simulation, a path equivalent to only one row is tested.
Figure 9-7 shows a fully simulated scene. Notice that the intersecting points along the surface of
virtual grove model are observed in Figure 9-7 B).

Simulated distances

The distance resulted in simulation is shown in Figure 9-8. X axis and Y axis represent the
scanning angle and distance, respectively. Z axis in Figure 9-8 B) means time. The distance
toward discarded points which is placed at no facet is set 0.

Results in reconstruction

The process of simulation is similar to the inverse process of the reconstruction algorithm.

The model reconstructed by using the distance and motion information is shown in Figure 9-9, as
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well as another figure combined with an original model is shown so as to observe how well it
was reconstructed. The visual result shows that the algorithm works well. However, this result is
obtained under the assumption that motion information is accurate.

Experiment
Configuration of equipments

The configuration of equipment used in the experiment is shown in Figure 9-10 A). As
mentioned before, the Y axis of a LADAR was placed parallel to the real axle. Since the power
generator sets up excessive vibration, it was place on the other cart to protect other devices from
vibration.

Data acquisition software

To obtain data from equipments, a data-acquisition software was developed by referring to
the previous simulation software. Time and position information from a GPS receiver is recorded
at the first column to the third column, and then 180 number of LADAR data go after every
second in order to synchronize data with respect to time. This software shown in Figure 9-10
displays receiving data and allows users to change several settings. This software was compiled
by MFC 6.0.

Calibration of LADAR

Raw data obtained from LADAR does not represent physical range as it is, a range
calibration was conducted with six sample lengths from one foot to six feet. X axis in
Figure 9-11 B) denotes sample lengths and y axis denotes values taken from LADAR. Data from
a LADAR showed almost linear variation. The metric unit was used in this experiment for

compatibility with that of a GPS receiver.
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Obtained raw data

A LADAR used in this experiment was able to measure up to 81 [m]. Since the maximum
value means just empty space, those were discarded. Figure 9-12 B) shows position data
obtained from a GPS receiver. Even though the vehicle was moved straightly, there are large
errors as shown in the figure. x axis in the plot comes under Longitude and y axis comes under
Latitude. In the computation, the origin position was reset right and bottom side of data set.

Adjustment of position data

Since these position data contains large errors, I was not able to make use of them as it is.
So I manually reset the control points which fit to the curve smoothly. Regeneration of path and
reconstruction was conducted at each separated row. The most rightward row in Figure 9-13
denotes the 1* row in this experiment. Red dots in are regenerated positions of the 1* row by
using a Spline curve fitting method.

Results
Reconstruction 3D space data

Figure 9-14 shows the result in reconstruction of 4" row. Acquiring time was 110 [s] for
the 4™ row. It was necessarily to separate vertices in a range in order to divide between the
canopy and ground. Points lower than 20 [cm] were colored with green regarding as the ground.
Therefore, two canopies become distinctive.

Vertices around canopies are manually collected, and tetrahedrons are created by using a
3D delaunay triangular function as shown in Figure 9-15. A tetrahedron consists of four vertices
or four facets. Figure 9-16 shows the entire reconstruction of a grove. The second canopy in the
3rd row looks like two trees. But there was no basis to separate adjacent canopies with obtained

data. Even though the sampled grove was chosen for the purpose of salient result, there is little
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gap between canopies in the general citrus grove. For automatic collection, additional
information such as stem positions must be provided.

Calculation of volume of canopy

Once a tetrahedron is determined from the vertices, then the volume of each tetrahedron

can be solved by

a-b|, _la-b-c| (8-10)

where a,b,c¢ are adjacent edge vectors of a vertex. The entire volume of a canopy is summation

of each volume of tetrahedron, and the height of a canopy is just the maximum Z axis value
among vertices. The results of each canopy are shown in Table 8-1.

Representation on GIS software

To show an application about collected data, the estimated variabilities were mapped using
an Arcview GIS software as shown in Figure 9-17. Figure 9-17 A) shows the location and path
on satellite image and B) shows the distribution of the estimated variability map by choosing an
inverse distance interpolation option. If more samples are used, more practical distribution will
be obtained.

Conclusion

A remote-sensing technique associated with a ground-based scouting system was
implemented. This system is designed to measure variability such as volume and height of citrus
canopy using an active range sensor and a GPS. A simulation software contributed to saving the
time to develop and verify the algorithm before experiment. A vertical-lateral scanning approach
can successfully reconstruct 3D canopies and solve their volume and height. A LADAR is an

effective range sensor to measure object’s size. However, since the precision of result is sensitive
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to motions, a more accurate positioning system is needed. If the center of a canopy was known
on the map, the grouping vertices for volumetry could be done automatically. This system can
also be applied to unmanned vehicle systems to automate the whole process of a ground-based
remote-sensing.

Future Work

Additional devices may be needed when the boundary between canopies is ambiguous. For
example, since range data do not tell between a canopy and other objects such as ground or
empty space, vision information can be a reference to separate them. Basically, range
information can be projected on the vision image through a calibration. If the boundary between
a canopy and the other part is divided through the segmentation, range data can be grouped based

on the segments. Then vertices associated with a canopy can be collected automatically.
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Table 9-1. Estimated volume and height of canopy from reconstructed 3D space data.

4™ row 3" row 2" row 1™ row
Volume[m®] Heightim] | Volume[m’] Heightfm] | Volume[m’] Height{m] | Volume[m®’] Height[m]
11.661 1.9476 11.079 1.5466 16.866 1.6399 14.288 2.0056
14.394 1.7248 64.874 2.73 13.279 2.5763 20.552 2.0231
16.504 2.7476 26.576 2.705
14.524 2.143
17.004 2.9033
Actual Range Data i
from LADAR
Range Data
i i i Distance
Creating Virtual Scanning
Model Measuring Distance
Reconstructing
Model
Generating
Path
Position
Path Data

Actual Position Data
from GPS

Figure 9-1. Procedure diagram.
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C

Figure 9-2. Coordinates of LADAR system. A) Coordinates of LADAR. B) Scanning direction.
C) Coordinates of LADAR on a vehicle.
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Figure 9-4. Virtual canopy model. A) Unit virtual canopy. B) Virtual grove.

outter point

Inner point

Figure 9-5. Search for a facet which a laser beam passes.
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Figure 9-6. Coordinates of LADAR during simulation.

Figure 9-7. Fully scanned visual simulation.

Figure 9-9. Reconstruction results. A) Reconstructed model. B) reconstructed model fitting to
the original virtual grove.

B
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Figure 9-10. Configuration of LADAR and GPS system. A) System layout. B) Data acquisition

software.
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Figure 9-11. LADAR calibration. A) Calibration of LADAR. B) Linearity of range.

Four number of Rows

B

Figure 9-12. Raw data. A) Raw range data of 4™ row acquired from LADAR. B) Row position
data acquired from GPS.
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Figure 9-17. Results applied to GIS software. A) Location. B) Variability map.
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CHAPTER 10
CONCLUSIONS AND FUTURE WORK

The objective of this chapter is to summarize and conclude my study.

Summary and Conclusions

Corners extracted from canopy scenes which have no artificial landmarks are unstable
when adding a variety of disturbances such as backlight or illumination. Thus the longevity of
features is prone to become short when the camera moves. To strengthen the role of features, a
leaf detection and a multilayered tracking method were invented, which are designed specially
for canopy scenes.

The key point of leaf detection is to segment leaf areas through the combination of
morphological operations. Once segmented, the center of a leaf in each segment is set as a
feature point. Since shadowed leaves are not sustainable, leaf detection was designed to apply
discriminating thresholds to each segment to secure as many features as possible.

In cases where the intensities of some leaves are similar, segment boundaries become
ambiguous. Thus choosing the center of leaf varies among frames. To be insensitive to these
sudden changes of the feature point, an active mesh feature tracking method was employed. Even
though an active mesh is insensitive to sudden changes, it requires exhaustive computation and it
is possible for wrong features to disturb normal features. Therefore, a multilayered active tree
method was invented which expands 2D meshes into 3D meshes. The creation of multiple layers
is based on coarse-to-fine images by means of Gaussian filtering. Features extracted from each
image recursively form hierarchical structures by connecting sub-features within an area which is
segmented by a Voronoi diagram. Since a multilayered active tree can evaluate the strength of a

feature, it can control the disturbance from unnecessary features. Subsistence of features was
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evaluated with the comparison of optical flow. The optical flow through these methods results in
insensitivity to noise.

A parallax can be seen around the edges of an image. Furthermore, a parallax occurs in the
horizontal movement model. Thus a cropping edge mosaicing method was suggested. It was
designed to automatically determine the cropping area based on the direction of optical flow.
Cropping area is blended by controlling an alpha channel. A cropping edge mosaicing method
showed that it can minimize the discordance caused by the parallax effect. One critical point that
must be considered in the lengthy mosaic is that a camera alignment must be parallel to the
direction of movement. Otherwise, the mosaic will go past the upper or lower boundaries.

For a 3D canopy model, local reconstruction was conducted by robot vision and global
reconstruction was conducted by a range sensor vehicle. Since it is difficult to accurately
measure dimensions of an unknown structure, the accuracy of reconstruction is evaluated with
re-projection error. In the vision-based reconstruction, an 8 point algorithm was tried first, which
is widely known. However, since an 8 point algorithm requires over 8 input points, it was
concluded that those coupled input points are quite sensitive to noise. In addition, since a
reconstructing object is larger than the view in the local reconstruction, accumulation of error is
inevitable without a ground truth. Instead, a Pliicker coordinates system is employed for
reconstruction, which employs a simpler computation method than an 8§ point algorithm. Since a
Pliicker coordinates system independently conducts the reconstruction with one pair of
correspondences with respect to given motion, error input does not influence the existing
reconstruction. The robot used for reconstruction provides repeated constant motion information
of the end-effector. Thus a Pliicker coordinates system was valid. According to experiments,

even though the motion information seems to have some errors, the re-projection error was
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adequately small. Therefore, reconstruction by a Pliicker coordinates system was successful with
the given motions. For reconstruction with a range sensor, a combination with LADAR and GPS
was used. Since a LADAR scans only 2D, additional information is needed to achieve 3D space.
A GPS is used to provide vertical direction information orthogonal to the scan plane of the
LADAR. Since the resolution of GPS information is underpopulated compared to that of
LADAR, the sparse positions and orientations are interpolated with a Spline fitting method. The
volume of reconstructed canopies were measured and represented on a global map. Contributions
within my study about each topic are shown in Table 10-1.

Future Work

Leaf detection was carried out with an image. This approach will be applicable to
multilayered successive images. Watershed segmentation could be also used to segregate fruits
from leaves. For active meshes, fixed parameters were used. If parameters can be adjusted
automatically, it will be a more intelligent tracking method. In the estimation of camera motion,
accumulating errors could not be converged. For a motion model in the open system, since there
is no ground truth, accumulation of error is essentially inevitable. To be within an allowable
range, a high performance camera, a fast computing system and a limited camera motion must be
considered. A LADAR range sensor is quite accurate, but the range information does not tell
which is ground or empty space. If range data are combined with vision data, it will yield more
effective results. When applying a range sensor, precise positioning and calibration are needed.
A vehicle system simulation will be able to test in the implemented virtual space. All topics in
my study are tested independently. In the next work, all procedures will be designed to work at
once automatically in real-time. Collected and processed information about the surface of the
canopy and fruit positions can be represented in the virtual environment as shown in Figure 10-1

so that farmers can observe and control the real situation remotely.
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Table 10-1. Contribution techniques.

Topic Main Technique Contribution - Level
Feature detection Leaf detection novel invention — normal
Feature tracking Multilayered active tree novel invention — complex
Image mosaicing Crop-off composition novel trial — normal
3D reconstruction (Vision) Pliicker coordinates system novel trial — normal
3D reconstruction (LADAR) Vertical scanning trial — simple
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Figure 10-1. Virtual robot harvesting simulation.
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APPENDIX A
GEOMETRY

Pliicker Coordinates System
Definitions
Point

A point in homogeneous expression is
p=(xy.z ; w (A-1)
In this dissertation, a point is regarded as p = (x, y,z), Le. p= (x, V,Z 1).
Line
A line in Pliicker coordinates is defined as follows.
L={ ; S, | (A-2)
where S is a normalized vertor between two points, and S, is a moment with respect to an

origin. S and S, are determined by given points p, and p,.

S_ p2_p1

s So. =P, XS (A-3)

- |pz —P:
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Plane

A plane is defined by
N=[S ; d] (A-4)
Given three points p, = (x,,7,.z,),p, = (*,,,.2,),p;s = (x;,¥5.2;), a plane which a
point and a line makes is
S=S,u—(P;%S5), d=-p; Som (A-5)
Angle
A sign between two lines which meet each other
Given two lines L, = {S,;S,,,} and L, = {S,;S,,,}, a sign of the angle between them is
sign(0) = sign(S, xS,,, +S, xS;;,) (A-6)
An angle between two lines which meet each other
Given two lines L, = {SI;SOLI} and L, = {SZ;SOL2 }, an angle between them is
0 = sign(@)cos™'(S, -S,) (A-7)
An angle between two planes

Given two planes N, =[S,;d,] and N, =[S,:d, ], an angle between them is

S -S
@=cos'| L 2 A-8
(M.M] (A9

Point
A point where a line passes though a plane

Givenaline L, = {S,;S,,,} and a plane N, = [S,:d,], a point where a line passes though

a plane is
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(Sz X Sou)_dzsl
= A-
P S-S, (A-9)

The angle between the line and the plane is.

S, -S s
f=cos'| L 2 |- A-10
(M-MJ 2 (10

A point on a plane which is closest to the point

Given a point p, = (x,y,z) and a plane N, = [S,:d, ], a point on the plane closest to the
point is

—d -S
p: ( 2+( 1 2))82 +p1 (A'll)
S,-S,

A point on a line which is closest to the point
Given a point p, = (x,y,2) and a line L, = {S,;S,,, }, a point on the plane closest to the
point is

S, X(SOLZ —\P; st))+
S, S,

pP= P (A-12)

A point on a line which is closest to a line

Given two lines L, = {S,;S,,,} and L, ={S,;S,,,}, a point on each line which is closest

to the other line is

_Sl 'SOLz +Sz 'SOLI
sin(cos™'(S, -S,))
_ Sou % (SOLZ _d((sl X S2)st)) (A-13)

: Sz 'SOLl
P, = d(s1 XS2)+p1

d =

Where d is a distance between two points.
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Line
A line passing through two lines with the shortest distance

Given two lines L, = {S] 35S0 } and L, = {515Sou }, a line passing through two lines with

the shortest distance is

S, xS
L:{W ; plx(slxsz)} (A-14)
1 2

Where p, is a point on line L, which is closest to the other line.
A line made by two planes
Given two point N, =[S,:d,] and N, =[S,;d, ], a line made by two planes is
L:{Sl S, 5 dyS, _dOZSI} (A-15)
Plane
A plane made by a point and a line
Given a point p, =(x,y,z) and a line L, ={S,;S,,, }, a plain made by a point and a line is
N=[SOL2_(p1XSZ) > Py 'SOLz] (A-16)
A plane made by two lines
Given a point two lines L, = {SI;SOLI} and L, = {Sz;SOL2 }, a plane made by two lines is
N=[8,x8, ; -8,,-S,] (A-17)

Basic Functions
Triangle Functions
Angles in triangle when edges are known

Given edges /,, angles are
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Figure A-2. Angles in triangle when edges are known.

Volume of Tetrahedron

Given edges /,, the volume is

Q
| S
o

%

Figure A-3. Volume of a tetrahedron.
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APPENDIX B
CRITICAL SOURCE CODES OF ALGORITHM

Leaf Detection
function [ Im_r ] = segment detect( Im_)

%>>[Im_r]=segment detect( Im )
%
%(c) copyright SangHoon Han, ARMg UFL 3/26/2008

%%
if nargin<l, return; end, [ h, w, ¢ ] =size(Im ); Im r=Im ; Im=1Im ;
%%
Iml =iml_im(Im );
opIm = imnorm(imopen(Im_, strel('disk',8))); % imshow(opIm); olm = imnorm(imshow_open( Im1,8 ));
fllm = oplm;
% fllm = imfilter(opIm, fspecial('disk’,8), 'replicate'); % [ wlm, bIm, Ims ] = imshow_watershed(-olm); %
imshow(Im_r);
[ wlm, Ims | = watershed (-fllm); bIm = double(wIm == 0);
sgArs = [];
for i=1:length(Ims),
sgAr = regionprops(Ims{i},'Area');
sgArs = [sgArs sgAr.Area];
end
msgAr = mean(sgArs);
%%
imPnt r={]; i=55; th r=[]; Im_r=blm;
opIm1 = imnorm(imopen(Im_, strel('disk',4)));
for i=1:length(Ims), %disp(i);
sglmi = Ims{i}; % imshow(Ims{55});
sgAr = regionprops(sglmi,'Area');
%  if sgAr.Area<(msgAr*0.2) , continue; end;
%  if ~tf ratio(sglmi, 0.2), continue; end;

mllm = immultiply(opIm, sglmi); % imshow(mllm); mllm = imshow multiply(olm, sgImi); %

th=0; sm=0;
while th<1
bwIm = double(im2bw(mlIm, th)); % imshow(bwIm);
sm = sum(sum(bwlm))/sum(sum(sglmi));
if sm<.25
bwCnt = regionprops(bwlm,'Centroid"); % imshow(sglmi);
if ~isempty(bwCnt),
imPnt _r=[imPnt_r floor(bwCnt.Centroid")];

end;

% [ bPnts, bdIm ] = bwboundaries(bwlm,'noholes');

% [L,num] = bwlabel(opIlm1);

% Ib = Label2rgb(L);

% if ~isempty(bPnts)

% bPntl =bPnts{1};

% mnPnt = floor(mean(bPntl));

break;

%

% % IbIm = double(label2rgb(bdIm, 'jet', 'W', 'shuffle"));
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% % for j=1:length(1bIm)

% % bPnti = bPnts{i};
% % end
% % cPnt = floor(sgAr.Centroid');
% end
end
th=th+0.01;
end
Im_r =imadd(Im_r, bwlm);

end

Im_r(:,:,3) = imnorm(bIm);

Im_r(:,:,2) = im_plot(bIm, imPnt_r, 'y+',1);
% imshow(Im_r);

% Im_r =1im_plot(olm,imPnt_r,'+',2);

%% %%%%%%%%%%%%%%%%%%%:%%%%% %% %% %%%%%:% %% %% %% %% % %% % %% %% %% %
function segment_detect demo() % clear

%%

imf ='gardenl cinepak filtered0000.bmp';

Im_=imshow file(imf ); Im =iml_im(Im );

%%

cle; clf; [ Im_r ] = segment detect( Im_ );

imshow(Im_r);

Multilayered Active Tree Tracking

Active Mesh
function [ ePnt2_r ] = mesh_track( oPnt2s r)

% match images.

% >Im

%>>[ crPnt _r ] = track mesh( prPnt , crPnt , Fct )
%

%(c) copyright SangHoon Han, ARMg UFL 4/7/2007

%%
if nargin<1, return; end
%%
Pnt21 = oPnt2s_r{l};

tri = delaunay(Pnt21(1,:), Pnt21(2,:));
trii = [tri tri(:,1)];

ngPnts = mesh_neighbor(tri);

%% wrong input

wPnt2s r=oPnt2s r;

%% combine forces

clc;

ngPnts = mesh_neighbor(tri);

F_=[]; F_tot=[];

Pnt2 1=wPnt2s r{l};

Pnt2=wPnt2s r{l};

pTime=now;

sz2 = size(oPnt2s_r1,2);

for k=2:s2z2, pTime = datestr_(pTime, k, sz2);
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%

Pnt2 k 1=wPnt2s r{k-1};
Lprev = [];
for i=1:size(Pnt2,2) % for each node
ngPnt = ngPnts{i};
for j=1:size(ngPnt,2),
nj = ngPni(j); %disp([k,i,nil);
Pnt2 k 1nj=Pnt2 k 1(:,nj);
if norm(Pnt2_k 1nj)==inf,
Pnt2 k 1nj=Pnt2 1(:,nj); end
Pnt2 k 1li=Pnt2 k 1(:,i);
if norm(Pnt2_k 1i)==inf,
Pnt2 k 1li=Pnt2_1(:,i); end
dlen =Pnt2 k 1nj-Pnt2 k 1j;
Lprev(i,nj) = norm(dlen);
end
end
Pnt2_k=wPnt2s r{k};
for i=1:size(Pnt2,2) % for each node
Pnt2 k i=Pnt2 k(:,i);
ngPnt = ngPnts{i};
slen=0;
for j=1:size(ngPnt,2),
nj = ngPnt(j);
slen = slen+Lprev(i,nj);
end
F =[I;
for j=1:size(ngPnt,2),
nj = ngPnt(j); %disp([k.i,njl);
Pnt2 k nj=Pnt2 k(:,nj);
if norm(Pnt2_k nj)==inf,
Pnt2 k nj=F tot{k-1}(:,nj); end
Pnt2_k nj = Pnt2(:,nj); end
Pnt2 k Inj=Pnt2 k 1(:,nj);
if norm(Pnt2_k 1nj)==inf,
Pnt2 k 1nj=Pnt2 1(:,nj); end
Fext=Pnt2 k nj-Pnt2 k Inj; % external force

if norm(Pnt2_k i)==inf,
Pnt2 k i=Pnt2(:,i); end
dPnt2 = Pnt2_k nj-Pnt2 k i; % internal length
Lcurr = norm(dPnt2);
if Leurr==0,
Lcurr = 1; end
w = (Lprev(i,nj)-Lcurr)/Lcurr;
Fint = w*dPnt2;

if slen==0,
slen=1; end
beta = (1-Lprev(i,nj)/slen)/(size(ngPnt,2)-1);
F_{k-1,i}(:,nj) = beta*(0.95*Fext-0.05*Fint);
end
sumF = sum(F_{k-1,i},2);
Pnt2 k i=Pnt2 k(,i);
if norm(Pnt2_k i)==inf,
Pnt2 k i=Pnt2(:,i); end
Pnt2 k 1i=Pnt2 k 1(:,i);
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if norm(Pnt2_k 1i)==inf,
Pnt2 k 1i=F tot{k-2}(:,i); end
alph=1;
alph =norm(Pnt2_k i-Pnt2 k li)/norm(sumF);
if alph<=1e-5, alph=1; end
F_tot{k-1}(:,i) = alph*sumF+Pnt2(:,i);
end
Pnt2 1="Pnt2;
Pnt2 =F tot{k-1};
end
%% F_ext{1,1}
% clf; plot_(oPnt2s r{3}(:,1),’b+'); hold on;
% plot (F tot{1}(:,1),r0"); hold off
%% plot combine force
nf = size(F_tot{1},2); np = size(F_tot,2);
tw = []; twp =[]; err =[J;
¢ = 'kgrbc'; s="+so*'; figure(1); clf; hold on;
pTime = now; owPnt2 r=[]; ePnt2 r=[]; wPnt2 r=[];
for i=1:np, pTime = datestr (pTime, i, np);
tw=[]; ow = []; er=[]; ww = [];
for j=1:nf
tw = [tw [F_tot{i}(:.)); i]1;
op2 =oPnt2s r{i+1}(:));
ow = [ow [op2; i]];
er = [er norm(F_tot{i}(:,j)-op2)/norm(oPnt2s r{i}(:,j)-op2)];
wp2 = wPnt2s r{i+1}(:,j);
if wp2==inf
% plot (oPnt2s r{i}(:,)),'s");
% plot ([oPnt2s r{i}(:,j) ow(1:2,j)],'b:");
% plot ([ow(1:2,j) tw(1:2,))],"k-");
else
ww = [ww [wp2; il];
end
end
Pnt2s r{i} = tw;
err = [err; er];
% plot_(tw(1:2,:),[c(2) s(2)]);
%  plot_(ow(1:2,:),[c(5) s(5)]);
owPnt2 r=[owPnt2 r mean(ow(1:2,:),2)];
ePnt2 r =[ePnt2 r mean(tw(1:2,:),2)];
wPnt2 r =[wPnt2 r mean(ww(1:2,:),2)];
end
figure(3); clf; hold on;
plot (owPnt2 r,'ks");
plot (ePnt2 r,'.-");
plot (wPnt2 r,'ro:");
legend(‘origianal',' Active-mesh','Mean");
axis normal
%%
figure(2); clf; hold on;
for j=1:nf
k =mod(j,4)+1;
plot(1:size(err,1),err(:,j) [":' c(k) s(k)]);
end
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Hierarchical Structure Generation

[ imPnt, descl | = surfpoints( Im_ );
imPts r{l1} =imPnt;
% subplot(2,2,1); imshow(Im)j; title(['Original']);
bIm=[];
fori=2:n_
Ims r{i} = imfilter(Im_, fspecial('gaussian',5*i,5*1) );
[ imPnt, descl ] = surfpoints( Ims_r{i} );
imPts_r{i} = imPnt;
%  subplot(2,2,i); imshow(bIm{i}); title(['Size=" int2str(5*1) ', Sig=" int2str(5*1)]);
End

for i=1:size(Pts_,2)
vPts r{i}.Pt=Pts {i};
[ vldx, vPts ]=idx_voronoi ( Pts_{i} );
vPts_r{i}.vPts=vPts;

end

if Iv_<2 return; end,;

vPt=vPts {lv_};vPt 1 =vPts {lv -1};

for i=1:size(pldx_,2)
[ pldx, pPt ]=idx_inpolygon( vPt 1.Pt, vPt.vPts{pldx (i)} );
if isempty(pPt) continue; end;
Idx = find(pldx==1); Nds_r{i}.Idx = Idx; Nds_r{i}.Pt =pPt;
Nds r{i}.Nd=nds_vpts (vPts_, lv_-1, Idx);

end

Multilayered Active Tree

function [ Ns_r ]= multimesh mv ( Ns, imPts , Pth r)
%
%%

Ns_r=Ns;

if nargin<l|isempty(Ns), multimesh_mv_demo; return; end
%%

%
k=2;
for k=2:size(Pth_r,2); disp(['k: ' int2str(k)]); %esize(Pth_r,2)
13=3; 12=2; 11=1;
dexFre3=[];
for n3=1:size(Ns, 1), disp(['n3: ' int2str(n3)]);
Nd3=Ns_r{n3,k-1};
if isempty(Nd3)[isempty(Nd3.Pt), continue; end;
imPtk3 = imPts_{13}.Pts{k}(:,n3);

if isinf(imPtk3)

dexFrc31 =Pt_ref3;
else

dexFrc31 = imPtk3-Nd3.Pt; % currentExternal-previous
end

dexFrc3 = [dexFrc3 dexFrc31];
Ns_r{n3,k}.Pt = Nd3.Pt+dexFrc31;
end;
Pt_ref3 = mean(dexFrc3,2);
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%

%

%

for n3=1:size(Ns,1), disp(['n3: ' int2str(n3)]);
Nd3=Ns r{n3,k-1};
if isempty(Nd3)[isempty(Nd3.Pt), continue; end;
imPtk3 = imPts_{13}.Pts{k}(:,n3);
if isinf(imPtk3)
dexFrc31 =Pt _ref3;
else
dexFrc31 = imPtk3-Nd3.Pt; % currentExternal-previous
end
Ns_r{n3,k}.Pt = Nd3.Pt+dexFrc31;
imPtk2 = imPts_ {12} .Pts{k}(:,Nd3.1dx);
dexFrc2 = imPtk2-Nd3.subPt;
while sum(sum(isinf(dexFrc2)))>0,
sn = round(size(dexFrc2(dexFrc2==Inf),1)/2);
if sn>1
dexFrc2(dexFrc2==Inf) = Pt_ref2*ones(1,sn);
else
dexFrc2(dexFrc2==Inf) = Pt _ref2;
end
end
Pt _ref2 = mean(dexFrc2,2);
Nd2=Nd3.Nd;
if isempty(Nd2), continue; end,;
for n2=1:size(Nd3.subPt,2),
Pt2 = Nd3.subPt(:,n2);
b2 =1;
[ang len] = ang_pt2( Pt2, Pt ref3 ); b2 = abs(ang)/pi;
[ang len] = ang_pt2( Pt2, dexFrc31 ); b2 = abs(ang)/pi;
a2=1-b2;
dexFrc23 = a2*dexFrc2(:,n2) + b2*dexFrc31;
dexFrc23 = dexFrc2(:,n2);

Ns_r{n3,k}.subPt(:,n2) = Pt2 + dexFrc23;
end

Ns_r{n3,k}.subPt = Nd3.subPt + (a2*dexFrc2 + b2*dexFrc31*ncol(dexFrc2));

for n1=1:size(Nd2,2), disp(['nl: " int2str(n1)]);
Nd1=Nd2{nl};
if isempty(Nd1), continue; end;
imPtk1l = imPts_{11}.Pts{k}(:,Nd1.1dx);
dexFrcl = imPtk1-Nd1.subPt; % currentExternal-previous
while sum(sum(isinf(dexFrc1)))>0,
sn = round(size(dexFrc1(dexFrc1==Inf),1)/2);
if sn>1
dexFrc1(dexFrc1==Inf) = Pt _refl *ones(1,sn);
else
dexFrc1(dexFrc1==Inf) = Pt refl;
end
end
Pt refl = mean(dexFrcl,2);
al=.9; b1=.075; c1=.015;
for n11=1:size(Nd1.subPt,2),
Ptl =Nd1.subPt(:,n11);

[ang len] = ang_pt2( Pt_ref2, Pt ref3 ); cl = (abs(ang)/pi)*1/4;
[ang len] = ang_pt2( Ptl , Pt ref3 ); bl = (abs(ang)/pi)*3/4;

b23 = bl+cl;
al =1-b23;
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dexFrc23 = al*dexFrcl(:,nl1) + bl*dexFrc2(:,nl) + cl*dexFrc31;
% dexFrc23 = dexFrcl(:,nl1);

Ns r{n3,k}.Nd{nl}.subPt(:,n11) = Ptl + dexFrc23;
end
% Ns_r{n3,k}.Nd{nl}.subPt = Nd1.subPt + ( al *dexFrcl + b1*dexFrc2(:,nl)*ncol(dexFrcl) +
cl*dexFrc31*ncol(dexFrcl));
end
end
end

Sequential Image Mosaicing
function [ Img_r ] = imgecut( Img_, offPnt , c , thk )

%plot 3D points on 2D image with viewpoint.
%>>1Img r=imcreate ( CData , bAlpha )

%

%(c) copyright SangHoon Han, ARMg UFL 2/8/2007

%%
if nargin<l,  return; end

h=Img .h; w=Img .w;c=Img_.c;
cp =round([w h]'/2);

if nargin<2, offPnt =  cp; end

ifnargin<3, ¢ =[110];end

ifnargin<4, thk =  0;end

%%

xy =[1w; I hl;

Pnts = [xy(:,1) [xy(1,1) xy(2,2)]' xy(:,2) [xy(1,2) xy(2,)]' xy(:,)];
Img r=Img_;

if thk >0, Img_r = imglines(Img_r, Pnts, ¢ ); end
Img_.glm = zeros(h, w);

%% get angle

%

dp = cp-offPnt ;

Ang = -pi/2+atan2(dp(2),dp(1)); %eAng = -90*pi/180;

%% get sp, ep

% Ang=10%*pi/180;

a = tan(Ang);

x = offPnt_(1); %y = Img_r.h-np(2);
y = offPnt_(2);

sy=1;
if a==
SX =X;

SY=Y;
else
sx = x+H(sy-y)/a;
if sx<1,
sx=1;
sy = y+H(sx-x)*a;
elseif sx>w
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end
end

sp = round([sx sy]');

ey=h;
if a==
ex =x;
ey =y;
else
ex = x+(ey-y)/a;
if ex<l,
ex=1;
ey = yH(ex-x)*a;
elseif ex>w
eX =Ww;
ey = yt+(ex-x)*a;
end
end

ep = round([ex ey]");
Img_r = imgline(Img_r, [sp, ep], c¢_, thk );

if Ang<0

sPnt = ep; ePnt = sp;
else

sPnt = sp; ePnt = ep;
end

% [sPnt, ePnt]
%% pntlist
% sPnt=[1,100]"; ePnt=[320,50]';
sx = sPnt(1); ex = ePnt(1);
sy = sPnt(2); ey = ePnt(2);
eg=[];
switch sx
case l,eg=1;
if (1<sy & sy<h), Pnts(:,2) = sPnt; eg = 1; end;
case w, eg = 3;
if (1<sy & sy<h), Pnts(:,4) = sPnt; eg = 3; end;
otherwise
switch sy
case 1, eg = 4; Pnts(:,1) = sPnt; Pnts(:,5) = sPnt;
case h, eg = 2; Pnts(:,3) = sPnt;
end
end

switch ex
case 1
if (1<ey & ey<h),
switch eg

case 2
Pnts(:,1) = ePnt; Pnts(:,5) = ePnt; Pnts(:,4) =[];

case 3
Pnts(:,1) = ePnt; Pnts(:,5) = ePnt;

case 4
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Pnts = [ePnt Pnts];
end
end
case w
if (1<ey & ey<h),
switch eg
case 4
Pnts(:,3) = ePnt; Pnts(:,2) =[];
case 1
Pnts(:,3) = ePnt;
case 2
Pnts = [Pnts(:,1:3) ePnt Pnts(:,4:5)];
end
end
otherwise
switch ey
case 1 s
switch eg
case 1
Pnts(:,4) = ePnt; Pnts(:,3) =[];
case 2
Pnts(:,4) = ePnt;
case 3
Pnts = [Pnts(:,1:4) ePnt Pnts(:,5)];
end
case h,
switch eg
case 3
Pnts(:,2) = ePnt; Pnts(:,5) = ePnt; Pnts(:,1) =[];
case 4
Pnts(:,2) = ePnt;
case 1
Pnts = [Pnts(:,1:2) ePnt Pnts(:,3:5)];
end
end
end
Img = imglines(Img _, Pnts, ¢ );

%% 1mfill %%%%%%%%%%%%%%%%%%%%%%6%%%%%%%%%%%%%%%%%%%%% %% %% %%

flm = imfill(Img.glm);
glm = 1-flm./max(max(flm));
for i=1:Img_r.c
Img_r.Im(:,:,i) = Img_r.Im(:,:,i).*glm;
end
Img r.glm =Img_r.glm.*glm;

%% %%%6%%%%%%%0%%%%% %% %%:%0%%%%% %% %% %% %%6%%%0%%% %% %% %% %%%% %% %%

function imgcut_demo() % clear

%%

Img_ = imgread('testl.png'); c =[110];
offPnt =[150 100]";

%%

clc; Img r = imgcut( Img_, offPnt ,c );
Img r=imgpoint(Img_ r,[160 120]',[1 1 0],'+");
Img r=imgpoint(Img_r,offPnt ,[1 1 0],'s");
clf; imgshow(Img_r);

152

www.manharaa.com



3D Reconstruction with Images

function [ Ln_r ]=In_pttr (Pt , Extr ,Intr )
Pth = cpth_extr(Extr );

Pntl = Pth(1:3);

[ cfrm3 r, Pnt2 | = cfrm3tr( Extr_,Intr ,[], Pt );
if isempty(Pnt2), return; end;

Ln r=In_pnt2(Pntl, Pnt2);

%

function [ Pnt r1,Pnt r2,len r,Ln r, Ang r][=pnt2 In2 (Ln 1,Ln 2)

[S1, SOL1]=s In(Ln_1); [S2, SOL2] =s In(Ln_2); % S1,S2 is unit vector.

dtS12 = dot(S1,S2); crS12 = cross(S1,S2);
Ang_r = acos(dtS12); sinAng = sin(Ang_r);
if sinAng==0, sinAng=1; end;
S12 = crS12/norm(crS12);
dtS2L1 = dot(S2,SO0L1); dtS1L2 = dot(S1,S0L2);
len_r = -(dtS1L2+dtS2L1) /sinAng; % length
if (dtS2L1==0), % parallel or coplanar
Pntl = dot(SO0L2,S12)/sinAng;
Pnt2 = dot(SOL1,S12)/sinAng;
Pnt rl =Pnt1*S1+Pnt2*S2;
else %
SL2 ¢S12S2 = SO0L2-len_r*cross(S12,S2);
Pnt rl = cross(SOL1,SL2 ¢S12S2)/dtS2L1;
end
Pnt 12 =Pnt rl+len r*S12;
SOL12 = cross(Pnt_rl, S12);
Ln r=In_s(S12, SOL12);

%

function [ Pnt r ]=pnt pttr2 (Pt 1,Pt 2, Extr 1,Extr 2, Intr )
Lnl =In_pttr( Pt 1, Extr 1, Intr ); if isempty(Lnl), return; end;
Ln2 =In_pttr( Pt 2, Extr 2, Intr ); if isempty(Ln2), return; end;
[ Pntl, Pnt2 | =pnt2_In2( Lnl, Ln2);

Pnt_r = mean([Pnt] Pnt2],2);

3D Reconstruction with Range Data

function [ rVrt ] = reconstructObject(scn_, Path , Dst , viewp );
%scanObject Summary of this function goes here

% Detailed explanation goes here

%02.scan object

%% %%%%%0%6%%%% %% %%6%%%%%:%6%%%% %% %% %% %% %% %% % %% %% %% %% % %% %% % %%

%%
if nargin<1,

scn_.rng = 90; sen_.smpNum = 12; scn_.t = 1; secn_.scnNum =41; scn_.len =10;

end

if nargin<2, paths = load('paths.txt'); end
if nargin<3, tri_ = load('tri_.mat'); end

if nargin<4, viewp_ =[.5 -1 .5]; end

%% create the resolution of beam with respect to time %%%
sN =scn_.smpNum; sT = scn_.t;
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sR = (scn_.rng) * pi/180;

if SN==1,
sS = pi/2; sE = pi/2; sD = sR; dt = sT;
s =pi/2;

else

sS = (pi - sR)/2; sE =sS + sR;
sD = sR/(sN-1);
s = sS:sD:sE; %[rad]
end
% dt =sT/sN;
% tm = 0:dt:(sT*scn_.scnNum - dt);

Tr="Path (:,2:4)"; Rt =Path (:,5:7)%

%% measure distances %%%%%%%%%6%%%%%%%:%%%%%%%6%:%%%%%%:%%%%%% %%
Dst=];
Dst(scn_.scnNum, sN).Pnt=[0 0 0]';
i=1;
Dst(scn_.scnNum, sN).dst = scn_.len;
st=[];t=1;
rFrm = []; rVrt=[];
%%
% cPnt = .25% .7071 .7071 0, 0 1 0; -.7071 .7071 07
for i= 1:(scn_.scnNum)-1, %disp(i);%[i scn_.scnNum]%i 5[s]
sPnt = Path_(i,2:4)';% +org_;
prevPnt = []; fsPnt = []; fePnt =[];
%%
for j = 1:sN, %[i] t]
fsPnt = [fsPnt sPnt];
Dst ij = Dst_(i,);
if Dst_ij~=0,
Pnt = Dst_ij*[cos(s(j)) sin(s(j)) 0]’;
trPnt = trans_yxz(Pnt, sPnt, Path_(i,5:7)");
ePnt = trPnt(1:3);
rVrt = [rVrt; ePnt'];
end

end
end

154

www.manharaa.com




APPENDIX C

DEVELOPMENT TOOLS
Table C-1. Softwares.
Development Tool Application
MATLAB 2009 Feature detection, Feature tracking, Simulation
OpenCV 2.0 Capturing, Image processing
Visual C++ 2005 Robot controller, GPS
C++Builder 2006 Real-time 3D reconstruction, Robot controller user interface
Delphi 2006 Virtual grove
GLScene Virtual grove
ARToolkit Augmented Reality
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